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a b s t r a c t

We review the caloron correspondence between G-bundles onM × S1 and�G-bundles on
M , where�G is the space of smooth loops in the compact Lie group G. We use the caloron
correspondence to define characteristic classes for �G-bundles, called string classes, by
transgression of characteristic classes of G-bundles. These generalise the string class of
Killingback to higher-dimensional cohomology.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The caloron correspondence was first introduced in [1] as a bijection between isomorphism classes of G-instantons on
R3 × S1 (calorons) and �G-monopoles on R3, where �G is the loop group of based loops in G. The motivation in that
case was the study of monopoles for loop groups, in particular, their twistor theory. It was subsequently [2] applied to
the case of instantons on the four-sphere and the four-sphere minus a two-sphere and loop groupmonopoles on hyperbolic
three-space. The motivation for the present work however was [3], which used the caloron correspondence to relate string
structures on loop group bundles and the Pontryagin class of G-bundles. In particular, it calculated an explicit de Rham
representative for Killingback’s string class [4] using bundle gerbes. We adopt a similar approach, without using gerbes, to
define higher classes of�G-bundles which we call string classes and discuss their properties.
We begin in Section 2 with a brief review of Chern–Weil theory for G-bundles and characteristic classes. In Section 3 we

explain the caloron correspondence which transforms a framed G-bundle overM×S1 to an�G-bundle onM and vice versa.
We show that this is an equivalence of categories between the category of framed G-bundles over manifolds of the form
M × S1 and the category of �G-bundles. When the framed G-bundle has a (framed) connection the appropriate objects to
consider on the�G-bundle are a connection and a suitably defined Higgs field [3] which are introduced in Section 3.3.
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In Section4wepresent ourmain results,wedefine (higher) string classes of�G-bundles, show that they are characteristic
classes and give an explicit formula for them. This is a generalisation of [3] where only the case of the three-dimensional
string class was discussed. A central role in this discussion is played by the path fibration PG→ G which is well known to
be the universal�G-bundle. Less well known, but also important, is the corresponding G-bundle on G× S1 introduced in [5]
which plays the role of a universal bundle for G-bundles over spaces of the formM× S1. We use the Higgs field to construct
for any �G-bundle a classifying map generalising results of [6] where the classifying map was defined only for the case of
�G-bundles arising by taking loops in a G-bundle.
Throughout this paper, Gwill be a compact, connected Lie group and all cohomology groups will use real coefficients.

2. Characteristic classes and Chern–Weil theory

2.1. Classifying maps and characteristic classes

In the interests of being self-contained we shall begin by giving a short overview of the theory of classifying maps and
characteristic classes before moving on to the specific case we are interested in. For details see the standard texts such
as [7]. Recall that there is a universal G-bundle EG→ BGwith the property that for any G-bundle overM there is a so-called
classifying map f : M → BG such that P is isomorphic to the pull back of EG→ BG by f . The homotopy class of the classifying
map is uniquely determined by the bundle and this construction establishes a bijection between isomorphism classes of
G-bundles on M and homotopy classes of maps from M to BG. The universal bundle is characterised (up to homotopy
equivalence) by the fact that it is a principal G-bundle and that EG is a contractible space.
A characteristic class associates to a G-bundle P → M a class c(P) in H∗(M)which is natural with respect to pulling back

in the sense that if g : N → M is a smoothmap then c(g∗P) = g∗c(P). Since all G-bundles are pulled back from the universal
bundle EG → BG and homotopic maps induce equal maps on cohomology, we conclude that characteristic classes are in
bijective correspondence with elements of the cohomology group H∗(BG).

2.2. The Chern–Weil homomorphism

One method of constructing characteristic classes is Chern–Weil theory. Denote by Ik(g) the algebra of all multilinear,
symmetric, ad-invariant functions of degree k on g. Elements of Ik(g) are called invariant polynomials. If A is a connection
on a G-bundle P → M with curvature F then the 2k-form cwf (A) = f (F , . . . , F) descends toM and defines a 2k-formwhich
we denote by the same symbol. We have the well-known

Theorem 2.1 (Chern–Weil Homomorphism). Let P → M be a G-bundle with connection A and curvature F and let f be an
invariant polynomial of degree k on g. Then the form f (F , . . . , F) on P descends to a 2k-form on M which is closed and whose de
Rham class is independent of the choice of A.

We denote the form on M by cwf (A), its de Rham class by cwf (P) ∈ H2k(M) and the Chern–Weil homomorphism
f 7→ cwf (P) by

cw(P) : Ik(g)→ H2k(M).

Notice that it follows easily from the construction that ifψ : N → M andwe endowψ∗P → N with the pullback connection
ψ∗Awhose curvature is ψ∗F then we have

ψ∗(cwf (A)) = cwf (ψ∗A)

and thus

ψ∗(cwf (P)) = cwf (ψ∗P)

so that P 7→ cwf (P) is a characteristic class. In fact if G is compact the Chern–Weil homomorphism

cw(EG) : Ik(g)→ H2k(BG)

is an isomorphism [8] which extends to an algebra isomorphism

cw(EG) : I∗(g)→ H∗(BG).

The proof of these results can be found in many standard places such as [8,9] and we will not repeat them here. However as
a final remark we shall record here an important result about invariant polynomials which we will use in Section 4.3 when
we examine an analogue of the Chern–Weil homomorphism for loop groups. The derivative of the ad-invariance condition
on a polynomial f ∈ Ik(g) gives

Lemma 2.2. Let f ∈ Ik(g) and α1, . . . , αk be g-valued forms of degree q1, . . . , qk respectively. Then if A is a g-valued p-form,
we have

f ([α1, A], α2, . . . , αk) = f (α1, [A, α2], . . . , αk)+ (−1)pq2 f (α1, α2, [A, α3], . . . , αk)+ · · ·
+ (−1)p(q2+···+qk−1)f (α1, . . . , αk−1, [A, αk]).
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3. The Caloron correspondence

The idea of transforming G bundles overM× S1 to bundles overM whose structure group is the loop group LG first arose
in [1,2] in the context of monopoles and calorons and for the case ofM = R3. In [3] this was generalised to the setting of a
generalmanifoldM and applied to string structures. The currentworkmakes two further generalisations. The first is that we
want to work with the group�G of based loops. This necessitates a careful use of framings for the G-bundle. The second is
to note that it is common to all these constructions that the inverse correspondence is only an inverse ‘up to isomorphism’.
In category theory this is what is called a pseudo-inverse and for this reason we have found it useful to discuss the caloron
transform as a functor between categories
Before discussing the caloron correspondence we need some definitions.

3.1. Looping bundles

We regard the circle S1 as the quotientR/2πZ and hence denote the identity in S1 as 0. Let�G be the group of all smooth
maps from S1 into Gwhose value at 0 is the identity.

Definition 3.1. Let P → X be a G-bundle and X0 ⊂ X a submanifold. We say that P is framed (over X0) if we have chosen a
section s0 ∈ 0(X0, P). Denote by P0 ⊂ P the image of s0.

The two particular examples of this general concept that we will be using are:

Example 3.1. If X is a pointed space, that is a space with a point x0 ∈ X chosen, then a framed bundle is a pointed bundle,
that is a bundle Q → X with a point q0 chosen in the fibre over x0.

Example 3.2. When P̃ → M × S1 is a G-bundle over M × S1 we will always frame with respect to the submanifold
M0 = M × {0}.

If P → X is a framed bundle let�P0(P) be all smoothmaps from S
1 into P whose value at 0 is in P0 = s0(X0) and similarly

let �X0(X) be all smooth maps from S
1 into X whose value at 0 is in X0. Note that �P0(P) → �X0(X) is an �G-bundle.

We do not discuss the Fréchet principal bundle structure of �P0(P) → �X0(X) here, details can be found in [10–12]. Note
however that we need G connected so that any G-bundle over the circle is trivial and thus�P0(P)→ �X0(X) is onto. We call
�P0(P) → �X0(X) a loop bundle. Of course not all �G-bundles over M are loop bundles because not all M are of the form
�X0(X). However we prove below the useful fact that every�G-bundle is the pullback of a loop bundle.

Remark 3.1. If Q → X is a pointed bundle then instead of�{q0}(Q )→ �{m0}(M)we use the notation�(Q )→ �(M).

3.2. The caloron correspondence

Let Bun�G be the category whose objects are�G-bundles and morphisms are�G-bundle maps and let Bun�G(M) be the
groupoid of all �G-bundles P → M with morphisms those bundle maps covering the identity map onM , that is the group
of gauge transformations of P .
Let frBunG be the category of all framed G-bundles P̃ → M × S1 with morphisms only those G-bundle maps which

preserve the framing and cover a map N× S1 → M× S1 of the form f × id for some f : N → M . Note that such a map sends
N0 = N × {0} toM0 = M × {0}. In both cases there are projection functorsΠ to the category of manifolds Man defined by
Π(P → M) = M andΠ (̃P → M × S1) = M and in the obvious way on morphisms.
Define a map η : M → �M0(M × S

1) by η(m)(θ) = (m, θ). Notice that η(m)(0) = (m, 0) ∈ M0 so this is well defined. If
P̃ → M × S1 is a framed G-bundle then�P̃0 (̃P)→ �M0(M × S

1) is an�G-bundle and we can pull it back with η to form an
�G-bundle F (̃P) = η∗(�P̃0 (̃P))→ M . It is straightforward to check that this defines a functor

F : frBunG → Bun�G
which commutes with the projection functor. We will show that this functor is an equivalence of categories. This means we
can find a functor

C : Bun�G → frBunG
and natural isomorphisms

α : F ◦ C ∼= idBun�G and β : C ◦ F ∼= idfrBunG .

We shall call the functor C the caloron transform. For simplicity, from now onwe shall write C−1 forF and call it the inverse
caloron transform. Note however that strictly speaking it is only a pseudo-inverse, that is it inverts C only up to natural
isomorphisms.
To construct the caloron transform we follow [3]. Suppose we have an �G-bundle P → M and consider the�G-bundle

P × S1 → M × S1 where the �G action is trivial on the S1 factor. Then use the evaluation map ev : �G × S1 → G to form
the associated G-bundle P̃ → M × S1. That is, define P̃ by

P̃ = (P × G× S1)/�G
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where �G acts on P × G × S1 by (p, g, θ)γ = (pγ , γ (θ)−1g, θ). Then there is a right G action on P̃ given by [p, g, θ]h =
[p, gh, θ] (where square brackets denote equivalence classes) and a projection π̃ : P̃ → M × S1 given by π̃([p, g, θ]) =
(π(p), θ). This action is free and transitive on the fibres (which are the orbits of the G action) and P̃ → M× S1 is a principal
G-bundle. Notice that overM0 = M × {0}we have the well-defined framing

s0(m, 0) = [p, 1, 0]
where p is any point in the fibre of P overm and 1 ∈ G is the identity. We define P̃ with this framing overM0 to be C(P).
To see that the inverse caloron transform inverts the caloron transform up to a natural isomorphism we first define
η̂ : P → �P̃0 (̃P) = �P̃0((P × G× S

1)/�G)

by η̂(p)(θ) = [p, 1, θ]. Notice that
η̂(pγ )(θ) = [pγ , 1, θ]

= [pγ , γ−1(θ)γ (θ), θ]
= [p, γ (θ), θ ]
= (η̂(p)γ )(θ).

Thus we have the bundle map

P
η̂ //

��

�P̃0 (̃P)

��
M

η // �M0(M × S
1)

which defines an isomorphism αP : C−1(C(P)) = C−1(̃P) = η∗(�P̃0 (̃P)) ' P and the natural isomorphism α : C
−1
◦ C ∼=

idBun�G .
For the second isomorphismwe start with a G-bundle P̃ → M× S1 and note that the construction of P = C−1(̃P) is such

that the fibre of P overm is given by
Pm = {f : S1 → P̃ | π̃(f (θ)) = (m, θ), f (0) ∈ P̃0}.

The�G action is the pointwise action of a loop. The fibre of C(P) over (m, θ) ∈ M × S1 is given by
(Pm × G× {θ})/�G = {f : S1 → P̃ | π̃(f (θ)) = (m, θ)} × G× {θ}

and we have the obvious map
βP̃ : [f , g, θ] 7→ f (θ)g ∈ P̃(m,θ)

which is a well-defined isomorphism of G-bundles and the required natural isomorphism. We need to check that this
preserves the framing. Let P̃0 be the framing of P̃ → M × S1. The framing of C(P) over a point (m, 0) is given by [f , 1, 0]
which maps under βP̃ to f (0) ∈ P0 so that the natural isomorphism preserves the framings.
We have now proved:

Proposition 3.2 ([1,3]). The caloron correspondence is an equivalence of categories between frBunG and Bun�G commuting in
both cases with the projections toMan.

Remark 3.2. Note that being an equivalence means in particular that the caloron correspondence is a bijection between
isomorphism classes of framed G-bundles onM × S1 and�G-bundles onM . Moreover it behaves naturally with respect to
maps between these bundles.

We also have

Corollary 3.3. Let P → M be an�G-bundle and let η : M → �M0(M×S
1) be defined by η(m)(θ) = (m, θ). Then there exists a

framed G-bundle P̃ → M×S1 with the property that P is isomorphic to the pull back of the loop bundle�P̃0 (̃P)→ �M0(M×S
1).

Example 3.3. Let Q → X be a pointed G-bundle and �(Q ) → �(X) its loop bundle. The inverse caloron transform
associates to�(Q )→ �(X) a framedG-bundle over�(X)×S1. It is straightforward to see that this is the pullback ofQ by the
evaluation map ev : �(X)× S1 → X which sends (γ , 0) 7→ γ (0). The framing is defined by noting that (ev∗Q )(γ ,0) = Qγ (0)
so we can define s0(γ , 0) = q0 ∈ Qx, the point of Q , because the loop γ satisfies γ (0) = x0, the point of X .

Example 3.4 (The Path Fibration). Following [13] let PG be the space of paths in G, that is smooth maps p : R→ G such that
p(0) is the identity and p−1∂p is periodic. Then this is acted on by�G and

�G // PG

��
G
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is an�G-bundle called the path fibration, where the projection π sends a path p to its value at 2π . PG is contractible and so
the path fibration is a model for the universal�G-bundle and we have B�G = G.
The caloron transform of the path fibration must be a G-bundle on G × S1. This bundle has the following simple

description [5]: Start with G × G × R and define an action of Z by (g, h, t)n = (g, gnh, t + 2πn). Denote the quotient
by P̃G. Notice that it is a principal G-bundle with the G action given by [g, h, t]k = [g, hk, t] and the projection P̃G→ G× S1
defined by [g, h, t] 7→ (g, [t]). To see that P̃G really is C(PG) note that we can view the latter as (PG × G × R)/(�G × Z)
where the action is given by (p, g, t)(γ , n) = (pγ , γ (t)−1g, t + 2πn). Then an isomorphism C(PG)

∼
−→ P̃G is given by

[p, g, t] 7→ [p(2π), p(t)g, t]. Here we use the fact that p : R → G satisfies p−1∂p is periodic if and only if it satisfies
p(t + 2πn) = p(2π)np(t).
It is well known that PG → G is a universal �G-bundle and we construct a classifying map for any �G-bundle P → M

below. Being universal in categorical language means that PG → G is a terminal object in the category Bunh�G where
morphisms are replaced by homotopy classes ofmorphisms. As the caloron transformations are an equivalence of categories
it follows that P̃G = C(�G) → G × S1 is a terminal object in the category frBunhG of framed G-bundles P̃ → M × S1 with
morphisms given by homotopy classes of maps f × idS1 : N × S

1
→ M × S1 where the allowable homotopies are those of

the form H × idS1 : [0, 1] × N × S
1
→ M × S1 for H : [0, 1] × N → M is a homotopy between maps from N toM .

3.3. Higgs fields and the caloron correspondence

Importantly for our purposes we can extend the caloron correspondence to bundles with connection. More precisely, we
have a correspondence between framedG-bundles onM×S1with framed connection and�G-bundles onMwith connection
and Higgs field (Definition 3.6).

Definition 3.4. Let P → X be a framed bundle with framing s0 ∈ 0(X0, P). A framed connection is a connection A on P such
that s∗0(A) = 0.

Lemma 3.5. Framed connections exist on framed bundles.

Proof. As X0 ⊂ X is a submanifold we can choose an open cover {Uα}α∈I such that Uα ∼= Uα ∩ X0 × Vα for some open
ball Vα in Rd where d = dim(X) − dim(X0). Moreover there is a section sα : Uα → P . On each Uα ∩ X0 we can choose
gα : Uα ∩ X0 → G such that gαsα takes values in P0 and we can extend gα to all of Uα by making it constant in the Vα
directions. In other words we can just assume that sα restricted to Uα ∩ X0 takes values in P0. We can now take the flat
connection induced by each sα and combine these with a partition of unity. The result is a framed connection. �

The next concept we need is that of a Higgs field for an�G-bundle. Let�g be the Lie algebra of all smooth maps from S1
into g, the Lie algebra of G, whose value at 0 is zero. Of course,�g is the Lie algebra of�G.

Definition 3.6. A Higgs field for an�G-bundle P → M is a map8 : P → �g satisfying the (twisted) equivariance condition

8(pγ ) = ad(γ−1)8(p)+ γ−1∂γ ,

for p ∈ P and γ ∈ �G.

Lemma 3.7 (cf. [3]). Higgs fields exist.

Proof. This is a standard construction relying on the fact that a convex combination of Higgs fields is a Higgs field so that
one can use partitions of unity to patch together locally defined Higgs fields. See the discussion on page 551 of [3]. �

Example 3.5 (The Path Fibration). A connection for the path fibration is given in [14, Section 2, page 53]. Let α be a smooth
real-valued function on R such that α(t) = 0 for t ≤ 0 and α(t) = 1 for all t ≥ 2π . Then a connection in PG is given by

A = 2− α ad(p−1)π∗2̂,

where2 is the (left-invariant) Maurer–Cartan form on G and 2̂ is the right-invariant Maurer–Cartan form. The curvature of
this connection is

F =
1
2

(
α2 − α

)
ad(p−1)[π∗2̂, π∗2̂].

A Higgs field for PG is given by

8(p) = p−1∂p.

We call these the standard connection and Higgs field for the path fibration.

Proposition 3.8. Let P → X be a framed bundle with framed connection. Then the loop bundle �P0(P) → �X0(X) has a
connection and Higgs field.
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Proof. If A is the connection on P then8(q) = A(∂q) defines a Higgs field

8 : �P0(P)→ �g.

As in [3] we can use the connection to define a connection on the loop bundle by acting pointwise. �

Proposition 3.9. If P̃ → M×S1 is a framed bundle with framed connection then the�G-bundleC−1(P)→ M has a connection
and Higgs field.

Proof. It suffices to note that connections and Higgs fields pull back. �

Suppose insteadwe are given an�G-bundle P with connectionA andHiggs field8. Thenwe candefine a formon P×G×S1
by

Ã = ad(g−1)A(θ)+2+ ad(g−1)8 dθ.

This form descends to a form on P̃ and the connection (also called Ã) is given by this equation considered as a form on
(P × G× S1)/�G. To show that this is well defined, we need to check that it is independent of the lift of a vector in P̃ . That
is, if X̂ and X̂ ′ are two lifts of the vector X ∈ T[p,g,θ ]̃P to the fibre in P × G× S1 above [p, g, θ], then Ã(X̂) = Ã(X̂ ′). Suppose
then, that X̂ ∈ T(p,g,θ)(P ×G× S1) and X̂ ′ ∈ T(p,g,θ)γ (P ×G× S1). Then X̂γ ∈ T(p,g,θ)γ (P ×G× S1), and X̂ ′ and X̂γ differ by a
vertical vector (with respect to the LG action) at (p, g, θ)γ = (pγ , γ (θ)−1g, θ) and so it is sufficient to show that Ã is zero
on vertical vectors and invariant under the LG action (since then Ã(X̂ ′) = Ã(X̂γ + vertical) = Ã(X̂)). The vertical vector at
(p, g, θ) generated by ξ ∈ �g is

V = (ιp(ξ),−ξ(θ)g, 0),

where ιp(ξ) represents the fundamental vector field at p generated by the Lie algebra element ξ . Therefore,

Ã(V ) = ad(g−1)A(ιp(ξ))(θ)− g−1ξ(θ)g

= g−1ξ(θ)g − g−1ξ(θ)g
= 0.

So Ã is zero on vertical vectors. Now, suppose X̂ = (X, gζ , xθ ) is given by

d
dt

∣∣∣∣
0
(γX (t), g exp(tζ ), θ + tx),

where γX (t) is a path in P whose tangent vector at 0 is X and where ζ and x are elements of the Lie algebras of G and S1
respectively. Then

X̂γ = (Xγ , γ (θ)g(ζ + xad(g−1)γ (θ)−1∂γ (θ)), x).

So

Ã(pγ ,γ (θ)−1g,θ)(X̂γ ) = Ã(pγ ,γ (θ)−1g,θ)(Xγ , γ (θ)g(ζ + xad(g
−1)γ (θ)−1∂γ (θ)), x)

= ad((γ (θ)−1g)−1)A(Xγ )+ ζ + xad(g−1)γ (θ)−1∂γ (θ)+ ad((γ (θ)−1g)−1)x8(pγ )
= ad(g−1)ad(γ )ad(γ−1)A(X)(θ)+ ζ + xad(g−1)γ (θ)−1∂γ (θ)
+ ad(g−1)xad(γ )(ad(γ−1)8(p)+ γ−1∂γ )

= ad(g−1)A(X)(θ)+ ζ + ad(g−1)x8(p).

Therefore Ã is invariant under the LG action and so defines a form on P̃ . It is a connection form since if [X, gζ , xθ ] is a vector
at [p, g, θ], (so X ∈ TpP, ζ ∈ g and xθ ∈ TθS1) then [X, gζ , xθ ]h = [X, gh ad(h−1)ζ , xθ ] and so

Ã([X, gζ , xθ ]h) = ad(h−1g−1)A(X)(θ)+ ad(h−1)ζ + ad(h−1g−1)x8(p)

= ad(h−1)Ã([X, gζ , xθ ])

and further, the vertical vector at [p, g, θ] generated by ζ ∈ g is given by

Vζ =
d
dt |0
[p, g exp(tζ ), θ]

= [0, gζ , 0]

and so Ã(Vζ ) = ζ . Note that the connection defined above is a framed connection. To see this, recall from Section 3.2 that
P̃0 is given by equivalence classes of the form [p, 1, 0]. A tangent vector to [p, 1, 0] ∈ P̃0 is therefore of the form [X, 0, 0],
for X a vector field along p. Thus, if (v, x) ∈ T{m}×{0}(M × S1) and p is in the fibre above m, we have s∗0(Ã)(m,0)(v, x) =
Ã[p,1,0]([X, 0, 0]) = A(X)(0) = 0. Therefore Ã is a framed connection.
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We extend our earlier notation by defining Bunc�G be the category whose objects are �G-bundles with connection and
Higgs field and morphisms are�G-bundle maps preserving connections and Higgs fields. Let frBuncG be the category whose
objects are framed G-bundles P̃ → M × S1 with framed connections and with morphisms only those G-bundle maps which
preserve the framing and connection and cover a map N × S1 → M × S1 of the form f × id for some f : N → M . We have

Proposition 3.10. The caloron correspondence

C : Bunc�G → frBuncG
and

C−1 : frBuncG → Bunc�G
is an equivalence of categories with the same natural isomorphisms as before.

Proof. It suffices to show that the natural transformations preserve the connections.
Suppose we have the G-bundle P̃ → M × S1 with connection Ã. Applying the caloron construction twice gives us the

G-bundle C(C−1(̃P)) and according to the discussion above the connection on this bundle is given by

C(C−1(Ã))[p,g,θ ] = ad(g−1)Ãp(θ) +2+ ad(g−1)Ã(∂p)dθ.

NowC(C−1(̃P)) is isomorphic to P̃ via themapβP̃ : [f , g, θ] 7→ f (θ)g . The pushforward of this on a tangent vector [X, gζ , xθ ]
at [p, g, θ] is given by

βP̃∗[X, gζ , xθ ] = X(θ)g + ιp(θ)g(ζ )+ ∂p(θ)xg.

(Note here that X is a vector tangent to the point p ∈ C−1(̃P) = η∗�(̃P), which means it is a vector field along the loop p.)
Using this it is easy to see that β∗

P̃
C(C−1(Ã)) = Ã.

Suppose, on the other hand, we had started with an �G-bundle P with connection A and constructed C−1(C(P)). Then
the connection C−1(C(A)) is given in terms of the connection on C(P) by acting pointwise and since the isomorphism
αP : P

∼
−→ C−1(C(P)) is essentially given by p 7→ (θ 7→ [p, 1, θ])we clearly see that α∗PC

−1(C(A)) = A. �

4. Higgs fields and characteristic classes

4.1. Higgs fields and the string class

To illustrate the caloron correspondence let us briefly outline an application, that of string structures. This will serve not
only to give an example of the correspondence above but also as motivation for the next section in which our main results
will be in some sense an extension of those presented below. The material in this section is taken from [3].
String structures were introduced by Killingback as the string theory analogue of spin structures [4]. Suppose we have

an�G-bundle P → M . Since�G has a central extension by the circle (see, for example, [12] for details) we can consider the
problem of lifting the structure group of P to the central extension �̂G of �G. Physically, this is related to the problem of
defining a Dirac–Ramond operator in string theory.1 Mathematically, one has an obstruction to doing this—a certain degree
three cohomology class on the base of the bundle. This class is called the string class of the bundle andwewrite s(P) ∈ H3(M).
In [3] Murray and Stevenson give a formula for a de Rham representative of this class which, adapted from the case of free
loops to based loops, is given by:

Theorem 4.1 (Cf. [3, Theorem 5.1]). Let P → M be a principal�G-bundle. Let A be a connection on P with curvature F and let
8 be a Higgs field for P. Then the string class of P is represented in de Rham cohomology by the form

−
1
4π2

∫
S1
〈∇8, F〉 dθ,

where 〈 , 〉 is an invariant inner product on g normalised so the longest root has length squared equal to 2 and ∇8 =
d8+ [A,8] − ∂A

∂θ
.

In the case where P → M is given by loops in a G-bundle Q → X (so P = �(Q ) andM = �(X)) Killingback’s result (also
proved in [6,3]) is to relate this class to the first Pontryagin class of Q . In particular if p1(Q ) is the first Pontryagin class of Q
then s(�(Q )) is given by transgressing p1(Q ) to�(X):

s(�(Q )) =
∫
S1
ev∗p1(Q ),

1 In fact, the case that Killingback considered originally was that of a free loop bundle. Here we shall concern ourselves with the more general case of a
loop group bundle which is not necessarily a loop bundle but restrict our interest to the case of based loops.
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where ev : �(X) × S1 → X is the evaluation map. In order to obtain an analogue of this result for �G-bundles which are
not loop bundles, since we do not have the option of transgressing the Pontryagin class, we use the caloron correspondence.
Specifically, the string class of an �G-bundle P → M is given by integrating over the circle the first Pontryagin class of the
caloron transform of P which is a G-bundle P̃ → M × S1. To see this consider the caloron transform connection Ã on P̃ as in
the previous section. A calculation shows that the curvature of this connection is given by

F̃ = dÃ+
1
2
[Ã, Ã]

= ad(g−1)(F +∇8 dθ),
for F the curvature of the connection A on P and∇8 the covariant derivative of the Higgs field as above. The first Pontryagin
class of P̃ is then given by

p1(P̃) = −
1
8π2
〈F̃ , F̃〉

= −
1
8π2

(〈F , F〉 + 2〈F ,∇8〉 dθ).

Hence integrating over S1 yields

Theorem 4.2 (Cf. [3, Theorem 6.1]). Let P → M be an�G-bundle and P̃ → M × S1 its caloron transform. Then the string class
of P is given by integrating over the circle the first Pontryagin class of P̃ . That is,

s(P) =
∫
S1
p1(̃P).

The important point to note here is that the string class is canonically associated to a characteristic class for G-bundles,
namely the first Pontryagin class. Furthermore, the string class is itself a characteristic class for the �G-bundle P (see [6,
15]2). So using the caloron correspondence we have calculated a characteristic class of P . In the next section we shall extend
this idea to higher degree classes and we will see that, in fact, it is possible to construct characteristic classes for loop group
bundles for any characteristic class for G-bundles.

4.2. Classifying maps for�G-bundles

Since we wish to calculate characteristic classes of loop group bundles, it seems natural to try to find a classifying theory
for these bundles.
The case where the loop group bundle arises as a loop bundle is covered in [6] which considers a pointed bundle Q → X:

To write down the classifying map of the bundle π : �(Q ) → �(X) choose a connection for Q → X . Then take a loop
γ ∈ �(Q ) (so γ (0) = q0) and project it down to π ◦ γ ∈ �(X). Lift this back up to a horizontal path γh in Q starting at q0.
That is, γh is horizontal, γh(0) = q0 and π ◦ γ = π ◦ γh. Then the holonomy, hol(γ ) ∈ PG is determined by γ = γhhol(γ ).
This covers the usual holonomy hol : �(X)→ G and defines a bundle map:

P = �(Q ) hol //

��

PG

��
M = �(X) hol // G

Thus hol is a classifying map for the bundle�(Q )→ �(X).
We can extend this to the case of a general �G-bundle P → M as follows. Consider the �G-bundle P → M . Choose a

Higgs field 8 : P → �g for P . The equation 8(p) = g−1∂g for g ∈ PG has a unique solution and we define the Higgs field
holonomy, hol8, by hol8(p) = g where g solves this equation. Note that

8(ph) = ad(h−1)8(p)+ h−1∂h
and

(gh)−1∂(gh) = ad(h−1)g−1∂g + h−1∂h,
so that hol8(p · h) = hol8(p)h and hence hol8 descends to a map (also called hol8) fromM to G and we have

Proposition 4.3. If P → M is an�G-bundle with connection8 then hol8 : M → G is a classifying map.

Remark 4.1. Recall our comment that the G-bundle P̃G→ G× S1 was universal for framed G-bundles over manifolds of the
formM×S1. Proposition 4.3 also implies how to construct a classifyingmapM×S1 → G×S1 for any G-bundle P̃ → M×S1.

2 In fact, this will follow from our work in Section 4.3.
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That is pick a connection Ã for P → M × S1 and define h : M → G by sendingm ∈ M to the holonomy of A around the loop
θ 7→ (m, θ) computed relative to the framing. The classifying map is then h × idS1 . Of course if P̃ is the caloron transform
of an�G-bundle P → M with connection A and Higgs field8we have that h = hol8.

A natural question arises at this point: If Q → M is a G-bundle with connection A then we can define the holonomy of a
loop γ ∈ �(Q ). However, since the loop bundle�(Q )→ �(M) is an�G-bundle, we can also choose a Higgs field for it and
define the Higgs field holonomy of a loop γ in this bundle. Can we choose the Higgs field8 such that hol8 = hol? Define8
in terms of A as in the proof of Proposition 3.8 by

8(γ ) = A(∂γ ).

Using γ = γhhol(γ ), we find

∂γ = ∂γh · hol(γ )+ ιγh(hol(γ )
−1∂hol(γ )).

Since γh is horizontal (in the sense that all its tangent vectors are horizontal), applying the connection form A gives

A(∂γ ) = hol(γ )−1∂hol(γ ).

Therefore, hol8 = hol.
Recall from Section 3.2 that the inverse caloron transform of a G-bundle P̃ is given by the pullback η∗�P0 (̃P), for

η : M → �M0(M × S
1) defined by η(m)(θ) = (m, θ). Proposition 3.2 then implies that every�G-bundle is (isomorphic to)

the pullback of a loop bundle. Namely, the loop bundle�P0 (̃P)→ �M0(M×S
1)where P̃ → M×S1 is the caloron transform

of P . This suggests that there should be a relationship between hol8 and hol in general. We have

Lemma 4.4. Let P → M be an �G-bundle with connection A and Higgs field 8, P̃ → M × S1 its caloron transform and η as
above. Then hol8 = hol ◦ η.

Proof. If Ã is the connection form on P̃ then 8̃ : �P0 (̃P)→ �g defined by

8̃(γ ) = Ã(∂γ )

gives us that

hol8̃ = hol

as above. Therefore we need only show that hol8 = hol8̃ ◦ η̂, where η̂ : P → �P0 (̃P) is the bundle map which covers
η : M → �M0(M × S

1).
Let p ∈ P . Consider the unique horizontal path η̂(p)h such that

π̃(η̂(p)) = π̃(η̂(p)h)

given by projecting η̂(p) to�M0(M × S
1) and lifting horizontally back to�P0 (̃P). The tangent vector to the loop η̂(p) at the

point θ is given by the derivative ∂η̂(p)θ and since η̂(p)h is horizontal we have that

Ã(∂η̂(p)h,θ ) = 0.

Now, η̂(p)θ = [p, 1, θ], so we can explicitly calculate ∂η̂(p)θ :

∂

∂θ
η̂(p)θ = [0, 0, 1].

Recall that the connection Ã is given in terms of the connection A and Higgs field8 for P as

Ã = ad(g−1)A(θ)+2+ ad(g−1)8 dθ.

Therefore, we have Ã(∂η̂(p)) = 8(p). Or, in terms of the Higgs field for�P0 (̃P),

8 = 8̃ ◦ η̂.

As above, we have

8̃(η̂(p)) = hol(η̂(p))−1∂hol(η̂(p)),

and therefore hol8 = hol8̃ ◦ η. �

4.3. Higher string classes

In this section we shall present our main results (Theorem 4.13). As mentioned in the Introduction we are interested
in developing a method for geometrically constructing characteristic classes for �G-bundles. We will accomplish this by
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passing to the corresponding G-bundle and then writing the result in terms of data on the original loop group bundle. Many
of the calculations in this section appear in more detail in the second author’s Ph.D. thesis [15].

Definition 4.5. If P → M is an�G-bundle with connection A and Higgs field8 and f ∈ Ik(g)we define the string form by

sf (A,8) =
∫
S1
cwf (Ã) ∈ �2k−1(M)

where Ã is the connection defined by the caloron transform on the G-bundle C(P)→ M × S1.

While this is a definition we need a formula for the string form to be able to work with it. The Chern–Weil theory tells us
that if we start with an invariant polynomial f ∈ Ik(g) then the element in H2k(M × S1) that we end up with is f (F̃ , . . . , F̃)
where F̃ is the curvature of the G-bundle P̃ on M × S1. Note that if we write out f (F̃ , . . . , F̃) in terms of the curvature and
Higgs field on the corresponding�G-bundle P → M , we get

cwf (Ã) = f (F̃ , . . . , F̃)
= f (F +∇8 dθ, . . . , F +∇8 dθ)
= f (F , . . . , F)+ kf (∇8 dθ, F , . . . , F)

since f is multilinear and symmetric and all terms with more than one dθ will vanish. From now on we will adopt the
convention that whenever f has repeated entries they will be ordered at the end and we will write them only once. That is,
whatever appears as the last entry in f is repeated however many times required to fill the remaining slots. (For example,
f (F) = f (F , . . . , F) and f (∇8, F) dθ = f (∇8, F , . . . , F) dθ .) So integrating this over the circle gives∫

S1
cwf (Ã) = k

∫
S1
f (∇8, F) dθ

and we conclude

Proposition 4.6. If P → M is an�G-bundle with connection A and Higgs field8 then the string form is given by

sf (A,8) = k
∫
S1
f (∇8, F) dθ.

We can now prove

Proposition 4.7. The string form is closed.
Proof. This can be proved directly from the formula

sf (A,8) = k
∫
S1
f (∇8, F) dθ.

using the same methods as in Chern–Weil theory [9] but it is simpler to just note that cwf (Ã) is closed and that integration
over the fibre commutes with the exterior derivative so that sf (A,8) is closed. �

We can now consider the de Rham cohomology class of sf (A,8) in H2k−1(M) and we have

Proposition 4.8. The class of the string form is independent of the choice of the connection and Higgs field.
Proof. Again this can be proved directly but we can also note that if (A,8) and (A′,8′) are two connections and Higgs fields
for P → M then we have two corresponding connections Ã and Ã′ for the bundle C(P)→ M × S1. We know from standard
Chern–Weil theory that cwf (Ã′) = cwf (Ã)+ dβ for a form β ∈ �2k−1(M × S1). So we have

sf (A′,8′) = sf (A,8)+ d
∫
S1
β. �

An explicit formula for β is given in [15, Proposition 3.2.4]: Let α and ϕ be the difference between the two connections
and Higgs fields, respectively. So α = A′ − A and ϕ = 8′ − 8. Then, since the space of connections is an affine space (and
the same is true for Higgs fields [3]), we can define a one parameter family of connections and Higgs fields by

At = A+ tα, 8t = 8+ tϕ

for t ∈ [0, 1]. We let α̃ = ad(g−1)(α + ϕ dθ). Now consider the corresponding connection Ãt on C(P). If F̃t is the curvature
of this connection, then a calculation shows that the β is given by

β = k
∫ 1

0
f (α̃, F̃t) dt.

We now define
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Definition 4.9. If P → M is an �G-bundle and f ∈ Ik(g) we define the string class of P , sf (P) ∈ H2k(M), to be the de Rham
class of sf (A,8) for any choice of connection and Higgs field.

It follows immediately from the formula

sf (A,8) = k
∫
S1
f (∇8, F) dθ

that if ψ : N → M then

ψ∗(sf (A,8)) = k
∫
S1
ψ∗(f (∇8, F)) dθ

= k
∫
S1
f (ψ∗(∇8), ψ∗(F)) dθ

= sf (ψ∗(A), ψ∗(8))

and we have

Proposition 4.10. Both the string form and the string class are natural with respect to pulling back�G-bundles with connection
and Higgs field. In particular, the string class defines a characteristic class for �G-bundles.

Recall that in Example 3.5we defined a connection A andHiggs field8 on the path fibrationwhichwe called the standard
connection and Higgs field. In this case we have

Proposition 4.11 ([15]). The string form of the standard connection and Higgs field of the path fibration over G is

sf (A,8) =
(
−
1
2

)k−1 k!(k− 1)!
(2k− 1)!

f (2, [2,2], . . . , [2,2]),

where2 is the usual left-invariant Maurer–Cartan form on G. Hence the string class sf (PG), which is independent of the choice of
connection and Higgs field is the class of sf (A,8).

Proof. Evaluating the expression for the string form on the standard connection and Higgs field for the path fibration given
in Example 3.5 gives

k
∫
S1
f (∇8, F) dθ = f (2, [2,2])

(
1
2

)k−1
k
∫
S1

(
α2 − α

)k−1
∂α dθ

= f (2, [2,2])
(
1
2

)k−1
k
∫
S1

k−1∑
i=0

(
k− 1
i

)
(−1)k−1−iα2iαk−1−i∂α dθ

= f (2, [2,2])
(
−
1
2

)k−1
k
k−1∑
i=0

(
k− 1
i

)
(−1)i

1
k+ i

.

We can write the coefficient above without the sum [16]:

k
k−1∑
i=0

(
k− 1
i

)
(−1)i

k+ i
=
k!(k− 1)!
(2k− 1)!

.

Therefore, we have

k
∫
S1
f (∇8, F) dθ =

(
−
1
2

)k−1 k!(k− 1)!
(2k− 1)!

f (2, [2,2], . . . , [2,2]). �

Remark 4.2. We remarked earlier that if G is compact we have an isomorphism Ik(g) ' H2k(BG) given by f 7→ cwf (EG).
Because EG is contractible we can transgress this class. That is, we pull it back to EG, solve for π∗(cwf (EG)) = dρ, and
then the restriction of ρ to a fibre of EG → BG defines an element τ(f ) in H2k−1(G) which is well known (see for example
[17,18]) to be the class of the form above. That is

τ(f ) =
(
−
1
2

)k−1 k!(k− 1)!
(2k− 1)!

f (2, [2,2], . . . , [2,2]).

Before continuing we need a simple result about integration over the fibre:

Lemma 4.12. If ψ : N → M is a smooth function then pullback and integration over the fibre form a commuting diagram as
follows:



1246 M.K. Murray, R.F. Vozzo / Journal of Geometry and Physics 60 (2010) 1235–1250

�q(M × S1) �q(N × S1)

�q(M) �q(N)

(ψ×id)∗ //

∫
S1

��

∫
S1

��ψ∗ //

It follows that we have a commuting diagram also on cohomology.

H2k(M × S1) H2k(N × S1)

H2k−1(M) H2k−1(N)

(ψ×id)∗ //

∫
S1

��

∫
S1

��
ψ∗ //

In particular if ψ = hol8 : M → G is the classifying map of an�G-bundle with connection and Higgs field (A,8)we have

H2k(G× S1) H2k(M × S1)

H2k−1(G) H2k−1(M)

(hol8×id)∗ //

∫
S1

��

∫
S1

��hol∗8 //

Composing this with the results we have already established for the path fibration we have a commuting diagram

Ik(g)

H2k(G× S1) H2k(M × S1)

H2k−1(G) H2k−1(M)

(hol8×id)∗ //

∫
S1

��

∫
S1

��hol∗8 //

cw(P̃G) 22eeeeeeeeeeeeeeee

τ ,,YYYYYYYYYYYYYYYYY

This gives us

Theorem 4.13. If P → M is an�G-bundle and

s(P) : Ik(g)→ H2k−1(M)

is the mapwhich associates to any invariant polynomial f the string class of P, that is s(P)(f ) = sf (P), then the following diagram
commutes

Ik(g) H2k(M × S1)

H2k−1(G) H2k−1(M)

τ

��

∫
S1

��hol∗8 //

cw(̃P) //

s(P)

))SSSSSSSSSSSSSSSSSS

Notice that although the string form is natural wewould not expect the diagram in Theorem 4.13 to commute at the level
of forms unless the connection and Higgs field on P are the pullback of the connection and Higgs field on the path fibration.
While it is straightforward to see that this is true for theHiggs field it is not true for the connection.We can however calculate
what happens directly as follows.
If we start with the G-bundle P̃ → M × S1 we can pull back by the evaluation map ev : [0, 1] ×�M0(M × S

1)→ M × S1

to get a trivial bundle ev∗P̃ over [0, 1] ×�M0(M × S
1). A section is given by

h : [0, 1] ×�M0(M × S
1)→ ev∗P̃; (t, γ ) 7→ γ̂ (t),

where γ̂ is the horizontal lift of γ . If Ã is the connection in P̃ we can pull it back to ev∗P̃ and then back to [0, 1]×�M0(M×S
1)

to obtain

Ã′ := h∗ev∗Ã.

We can calculate the curvature F̃ of Ã and pull it back by ev to [0, 1] ×�M0(M × S
1) and because this is a product manifold

we can decompose it into parts with a dt and parts without a dt . Under this decomposition, we have

ev∗F̃ = −
∂

∂t
Ã′ ∧ dt + F̃ ′,
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where we call the component without a dt F̃ ′ since if we view the form Ã′ for fixed t0 as a connection form on�M0(M × S
1)

then its curvature is F̃ ′ evaluated at t0.
Now, we want to calculate

∫
S1 f (F̃). The following result is straightforward and allows us to write this integral in terms

of the pull back by the evaluation map

Lemma 4.14 ([15]). Let η : M → �M0(M × S
1) be as in Section 3.2. For differential q-forms on M × S1 we have

η∗
∫
S1
ev∗ =

∫
S1
,

or equivalently the following diagram commutes

�q(M × S1) �q(�M0(M × S
1)× S1)

�q(M) �q(�M0(M × S
1))

∫
S1

��

∫
S1

��

η∗
oo

ev∗ //

Therefore for a general�G-bundle P → M , we have∫
S1
f (F̃) = η∗

∫
S1
ev∗f (F̃)

= η∗
∫
S1
f (ev∗F̃).

So we wish to calculate explicitly
∫
S1 f (ev

∗F̃). To avoid many factors of 2π we will, for this proof, regard the circle as the
interval [0, 1]with endpoints identified. Then we can write∫

S1
f (ev∗F̃) =

∫
[0,1]
f (ev∗F̃)

and so we have

k
∫
S1
f (∇8, F)dθ = η∗

∫
S1
f (ev∗F̃)

= η∗
∫
[0,1]
f
(
−
∂

∂t
Ã′ ∧ dt + F̃ ′

)
= η∗

∫
[0,1]
f (F̃ ′)− kη∗

∫
[0,1]
f
(
−
∂

∂t
Ã′, F̃ ′

)
dt

= −kη∗
∫
[0,1]
f
(
−
∂

∂t
Ã′, F̃ ′

)
dt.

Using the formula F̃ ′ = dÃ′ + 1
2 [Ã
′, Ã′], we can write this as:

−kη∗
{∫
[0,1]
f (∂ Ã′, dÃ′)dt + (k− 1)

1
2

∫
[0,1]
f (∂ Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt + · · ·

+

(
k− 1
k− 2

)(
1
2

)k−2 ∫
[0,1]
f (∂ Ã′, dÃ′, [Ã′, Ã′])dt +

(
1
2

)k−1 ∫
[0,1]
f (∂ Ã′, [Ã′, Ã′])dt

}
where we have written ∂ Ã′ for ∂ Ã′/∂t . Thus we need to work with the general term(

k− 1
i

)(
1
2

)i ∫
[0,1]
f (∂ Ã′, dÃ′, . . . , dÃ′︸ ︷︷ ︸

k−i−1

, [Ã′, Ã′], . . . , [Ã′, Ã′]︸ ︷︷ ︸
i

)dt.

To deal with these terms we shall use integration by parts and the ad-invariance of f (Lemma 2.2). We are now in a position
to prove

Proposition 4.15.

sf (A,8) = hol∗8τ(f )+ dχ

for some (2k− 2) form χ .
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Proof. To calculate the general term given above, we integrate by parts in the�M0(M × S
1) and t directions giving∫

[0,1]
fidt =

∫
[0,1]
f (d∂ Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt + i

∫
[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

− d
∫
[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

and ∫
[0,1]
fidt = f (Ã′1, dÃ

′

1, . . . , dÃ
′

1, [Ã
′

1, Ã
′

1])− f (Ã
′

0, dÃ
′

0, . . . , dÃ
′

0, [Ã
′

0, Ã
′

0])

− (k− 1− i)
∫
[0,1]
f (Ã′, ∂dÃ′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

− i
∫
[0,1]
f (Ã′, dÃ′, . . . , dÃ′, ∂[Ã′, Ã′], [Ã′, Ã′])dt

where we have written fi for the integrand of the general term given earlier. Combining these gives

(k− i)
∫
[0,1]
fidt = fi,1 − fi,0 − i

∫
[0,1]
f (Ã′, dÃ′, . . . , dÃ′, ∂[Ã′, Ã′], [Ã′, Ã′])dt

+ i(k− 1− i)
∫
[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

− (k− 1− i)d
∫
[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

where we have written fi,1 and fi,0 for fi evaluated at t = 1 and 0 respectively. Using ad-invariance, the term on the middle
line simplifies to∫

[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

=

∫
[0,1]
f (dÃ′, ∂[Ã′, Ã′], Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt − 2

∫
[0,1]
f (∂ Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

− (k− 2− i)
∫
[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

and so

(k− 1− i)
∫
[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, d[Ã′, Ã′], [Ã′, Ã′])dt

=

∫
[0,1]
f (Ã′, dÃ′, . . . , dÃ′, ∂[Ã′, Ã′], [Ã′, Ã′])dt − 2

∫
[0,1]
f (∂ Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt.

Inserting this into the formula for
∫
fidt gives

(k− i)
∫
[0,1]
fidt = fi,1 − fi,0 − 2i

∫
[0,1]
fidt − (k− 1− i)d

∫
[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt

and hence

(k+ i)
∫
[0,1]
fidt = fi,1 − fi,0 − (k− 1− i)d

∫
[0,1]
f (∂ Ã′, Ã′, dÃ′, . . . , dÃ′, [Ã′, Ã′])dt.

So we have the following expression for sf (A,8):

k
∫
S1
f (∇8, F)dθ = −kη∗

{
k−1∑
i=0

(
k− 1
i

)(
1
2

)i 1
k+ i

(
fi,1 − fi,0 − (k− i− 1)dci

)}

where ci is the last integral in the equation above (with i [Ã′, Ã′]’s).
Now since Ã′0 = 0 and h(0, γ ) = h(1, γ )hol(γ ) (where h is the section from earlier), we have that

Ã′0 = ad(hol
−1)Ã′1 + hol

−1dhol
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and so

Ã′1 = −dhol hol
−1.

Therefore we have that fi,0 = 0 and we can calculate fi,1 in terms of f0,1 as follows:

f0,1 = f (Ã′1, dÃ
′

1)

= f (−dhol hol−1, d(−dhol hol−1))

= (−1)k
(
1
2

)k−1
hol∗f (2, [2,2])

and in general,

fi,1 = f (Ã′1, dÃ
′

1, . . . , dÃ
′

1, [Ã
′

1, Ã
′

1])

= (−1)k−i
(
1
2

)k−1−i
hol∗f (2, [2,2])

= (−1)i2if0,1

using the fact that d(−dhol hol−1) = − 12 [dhol hol
−1, dhol hol−1].

Therefore we have

k
∫
S1
f (∇8, F)dθ =

(
−
1
2

)k−1
k
k−1∑
i=0

(
k− 1
i

)
(−1)i

k+ i
hol∗8f (2, [2,2])

+ k
k−i∑
i=0

(
k− 1
i

)(
1
2

)i 1
k+ i

(k− i− 1)dci.

Recall from the proof of Proposition 4.11 that the coefficient above is equal to the coefficient in the definition of the
transgression map:

k
k−1∑
i=0

(
k− 1
i

)
(−1)i

k+ i
=
k!(k− 1)!
(2k− 1)!

.

So we see that the pull back of τ(f ) is cohomologous to the string form. �

5. Conclusion

There is an immediate natural generalisation of what we have done which is to replaceM × S1 by an S1-bundle Y → M .
In this case the caloron correspondence has been used in [19] in an application to string theory and in [20] in an application
to T -duality. String classes in this case have been constructed in [15] and will appear in [21].
The results we have presented are one way of defining characteristic classes for infinite-dimensional bundles by

essentially using the caloron correspondence to avoid the infinite dimensionality. Another approach would be to deal with
the infinite dimensionality directly by extending the notion of invariant polynomials to a genuinely infinite-dimensional
setting. Paycha, Rosenberg and collaborators have done this by using the Wodzicki residue as a trace on the Lie algebra
of the group of invertible, zeroth-order pseudo-differential operators on a vector bundle over a compact space (see for
example [22] or [23] and the references therein). In the case of a trivial, rank n real vector bundle over the circle this group
contains the loop group of O(n) as the subgroup of multiplication operators. The Wodzicki characteristic classes defined in
this way vanish on bundles whose structure group has a reduction to the loop group [24].
Finally we note two unanswered questions. Firstly we know from [3] that the three-dimensional string class is the

obstruction to lifting the structure group of a loop group bundle to the Kac–Moody group. The geometric significance of
the higher string classes is an open question. Secondly if we regard�G as based gauge transformations of a bundle over the
circle, how much of our work can be generalised to an arbitrary group of gauge transformations?
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