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1. Introduction

The caloron correspondence arose originally [1] as a correspondence between calorons (instantons on R3
× S1) with

structure group G and Bogomolny monopoles on R3 with structure group the loop group of G. Later it was realised that the
self-duality and Bogomolny equations can be disregarded and interesting results can be obtained by regarding the caloron
correspondence as a correspondence between G-bundles with connection onM × S1, for some manifoldM and loop group
bundles with connection and Higgs field on M . In particular in [2], the caloron correspondence was used to calculate the
string class of an LG-bundle, and generalised in [3,4], where it was used to define characteristic classes forΩG-bundles and
LG o S1-bundles. See also [5–7] for related applications of the caloron correspondence.

In the current work, we generalise these constructions by replacing the circle S1 by an arbitrary compact, connected
manifold X . We restrict X to be compact in order to make the various spaces of maps and sections associated to X Fréchet
spaces. In summary, if Y → M is a fibrationwith fibre X andP → Y is aG-bundle, which over a fibre of Y → M is isomorphic
to some G-bundle Q → X , we show thatP → Y is equivalent to an infinite-dimensional principal bundle P → M whose
structure group is the group Aut(Q ) of automorphisms of the G-bundle Q → X or a subgroup thereof. Which subgroup
occurs depends on whether the fibration Y → M is a product and whether the bundles are framed. The resulting four
possible cases are detailed in Section 2 without proof.

In Section 3, we give the detailed proofs of the correspondence in the most general cases, leaving some of the
specialisations for the reader. In the following section, we show how the correspondence works whenP has a connection.
In this case, P has a connection and some extra geometric data which we call a Higgs field in analogy with the case when
X = S1.
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The main results of the paper are in these two sections and summarised in Theorems 4.8 and 4.9 for the case of a general
fibration and Theorems 4.11 and 4.12 for the case when the fibration is a product. In Section 5 we use these constructions
to define characteristic classes of gauge group bundles and define differential form representatives for them in terms of
connections and Higgs fields. Finally in Section 6we consider the group of based gauge transformations and provide explicit
formulae for its universal characteristic classes.

2. Description of the caloron correspondences

There are four basic caloron correspondences. To introduce notation wewill discuss here what they are correspondences
between and leave the definition of the actual correspondences until later.

Let us fix Q → X a (principal) G-bundle. Define Aut(Q ) to be all bundle automorphisms of Q . A bundle automorphism
defines a diffeomorphism of X and thus there is a homomorphism Aut(Q ) → Diff(X) whose kernel, the gauge group of Q ,
we denote by G and whose image we denote by DiffQ (X). We therefore have a short exact sequence

1 → G → Aut(Q ) → DiffQ (X) → 1. (2.1)

Note that, unlike the case where X = S1, we may not have DiffQ (X) equal to Diff(X). To understand how this can happen
note that a diffeomorphism ψ ∈ Diff(X) is in the image of the map Aut(Q ) → Diff(X) if and only if ψ∗(Q ) ≃ Q . For
example, if Q → S2 is the standard Hopf bundle of Chern class 1 and ψ is the antipodal map then ψ∗(Q ) has Chern class
−1, so it cannot be isomorphic to Q . It is a standard fact that ifψ and χ are homotopic thenψ∗(Q ) ≃ χ∗(Q ), which shows
that the connected component of the identity Diff(X)0 is a subgroup of DiffQ (X).

Notice that if R → M is an Aut(Q )-bundle it induces an associated bundle with fibre X defined by R×Aut(Q ) X , where
Aut(Q ) acts on X via the homomorphism to DiffQ (X) above. If Y → M is a locally trivial fibre bundle with fibre X and
structure group DiffQ (X) denote by F(Y ) → M its DiffQ (X) frame bundle. If m ∈ M and f ∈ Fm(Y ) then, by definition,
f : X → Y is a diffeomorphism onto the fibre Ym which we call a frame at m. Notice that not all diffeomorphisms X ≃ Ym
are frames unless DiffQ (X) = Diff(X).

Definition 2.1. Let Y → M be a locally trivial fibre bundle with fibre X and structure group DiffQ (X) and P → Y be a
principal G-bundle. We say thatP has type Q → X if for allm ∈ M and for all f ∈ F(Y )we have f ∗(P) ≃ Q .

Remark 2.1. Notice that if f , f̃ ∈ F(Y )m, then f = f̃ ◦χ for χ ∈ DiffQ (X) so that f ∗(Q ) ≃ f̃ ∗(Q ). Moreover ifM is connected
and m′

∈ M , we can join m and m′ by a path which can be lifted to F(Y ) as a path joining f ∈ F(Y )m and some f ′
∈ F(Y )m′

so that f ∗(Q ) ≃ (f ′)∗(Q ). Hence for a connected manifold M it suffices to check the type condition at a single point m ∈ M
for a single framing of Ym.

We have the following correspondences:

1. The unframed caloron correspondence for fibrations.
There is a bijection between isomorphism classes as follows.
• G-bundlesP → Y of type Q → X and;
• Aut(Q )-bundles P → M with an isomorphism of spaces overM from P ×Aut(Q ) X → M to Y → M .

2. The unframed caloron correspondence for products.
If the fibration is a product Y = M × X then this becomes a bijection between isomorphism classes as follows.
• G-bundlesP → M × X of type Q → X and;
• G-bundles P → M .

We will call these two correspondences the unframed case to distinguish them from the next two cases. First we make a
general definition.

Definition 2.2. We say a fibre bundleW → Z is framed (over a submanifold Z0 ⊂ Z) if we have chosen a section s : Z0 → W .
We call s a framing (over Z0).

We need a number of cases of this definition. Firstly for the G-bundle Q → X we can pick x0 ∈ X and q0 ∈ Qx0 . This
amounts to a framing s of Q over the point Z0 = {x0} which is determined by the image q0 = s(x0). In this case we call x0
and q0 basepoints for X and Q . Secondly for the fibration Y → M a framing over M is simply called a framing. Thirdly if
s : M → Y is a framing, we will be interested in G-bundles framed over s(M) ⊂ Y . Again we will call these just framed.

In each case there is a natural notion of morphism that preserves the framing. Consider then x ∈ X and q ∈ Qx. By
restricting the short exact sequence (2.1) to framed isomorphisms we have a short exact sequence

1 → G0 → Aut0(Q ) → DiffQ0 (X) → 1. (2.2)

Wewill be interested in the casewhere X andQ have basepoints, that is,Q is framed over a point. In this caseG0 and Aut0(Q )
are the subgroups ofG and Aut(Q ), respectively, which fix the basepoint inQ , andDiffQ0 (X) is the subgroup of DiffQ (X)which
fixes the basepoint of X .
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Note that, because Y → M is not a principal bundle, a global section does not necessarily make it trivial. However, in
the case that it is trivial we take the framing of M × X → M to be m → (m, x) where x is the basepoint for X . Again we
have a notion of the framed type of a framed bundle by restricting all morphisms in Definition 2.1 to be framed. Notice that
if R → M is an Aut0(Q )-bundle it induces an associated framed bundle with fibre X defined by R×Aut0(Q ) X , where as above
Aut0(Q ) acts on X via the homomorphism to DiffQ0 (X).

With these definitions we have the following correspondences.

3. The framed caloron correspondence for fibrations.
There is a bijection between isomorphism classes as follows.
• Framed G-bundlesP → Y over a framed fibration Y → M of framed type Q → X and;
• Aut0(Q )-bundles P → M with a framed isomorphism of framed spaces overM from P ×Aut0(Q ) X → M to Y → M .

4. The framed caloron correspondence for products.
If the fibration is a product Y = M × X then this becomes a bijection between isomorphism classes as follows.
• Framed G-bundlesP → M × X of type Q → X and;
• G0-bundles P → M .

3. Construction of the caloron correspondences

Wenote first from [8] that the groups in Eq. (2.1) are Fréchet Lie groupswith Aut(Q ) a Fréchet Lie subgroup of Diff(Q ) and
DiffQ (X) an open subgroup of Diff(X).Wewill assume throughout that all infinite-dimensional spaces are Fréchetmanifolds.
For details see for example [9].

To establish the caloron correspondence we need the following useful fact.

3.1. Principal bundles and extensions

Let

1 → L
α
−→ H

β
−→ K → 1

be an extension of Fréchet Lie groups, that is a short exact sequence of groups such thatα is an immersion andβ a submersion
in the Fréchet sense. In particularβ admits local sections and thusH → K is a locally trivial L-bundle. Indeed if s : U → H is a
local section ofH → K forU ⊂ K , thenwe can defineU×L → H by (k, l) → s(k)lwith the inverse h → (β(h), s(β(h))−1h).

We are interested in the relationships between the principal bundles in the following diagrams

S

S/L

M

H

L

K

T

R

M

L

K

��?
??

??

�� ����
��

�

��?
??

??

����
��

�
(3.1)

If S → M is an H-bundle, then L acts on S on the right and the set of orbits S/L is a principal H/L = K -bundle over M .
Moreover S → S/L is a principal L-bundle. Notice that H acts on S/L on the right and the action on S covers this.

As L is normal in H the adjoint action of H on itself fixes L. Given a principal L-bundle T → R with H acting on R, we
say that T is an H-equivariant bundle if the L-action on T can be extended to an H-action on T which moreover covers the
H-action on R. In the case above we clearly have that S → S/L is an H-equivariant bundle. We have

Proposition 3.1. Fix a principal K-bundle R → M. We have a bijective correspondence between isomorphism classes of the
following objects:

(1) Principal H-bundles S → M with S/L → M isomorphic to R → M as K-bundles; and
(2) principal L-bundles T → R which are H-equivariant for the H-action on R induced by the K-action on R using the

homomorphism β .

Proof. The correspondence is as described above except that we need to check local triviality. In the forward direction if
S → M is locally trivial we can coverM by open sets U so that SU ≃ U × H and thus (S/L)U ≃ U × H/L so that SU → RU is
isomorphic as a principal L-bundle to U × H → U × H/L. As the extension H → H/L is a locally trivial L-bundle the result
follows.

In the backwards direction letm ∈ M and wewant to show that there is an open set U containingm such that TU → U is
a locally trivial H-bundle, namely TU ≃ U ×H . First choose U so that R → M is trivial, that is RU ≃ U ×K . As a consequence
we have a section U → R and the pullback of T → R by that section is locally trivial and thus admits a section in some
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open neighbourhood ofm. So without loss of generality we can assume that open neighbourhood is U andwe have a section
σ : U × {1} → T of T restricted to U × {1}. We define

ψ : U × H → TU
(x, h) → σ(x)h.

This is a smooth bijection of right H spaces. It suffices to show that its inverse is also smooth. We do this by covering TU
with open sets on which the inverse is manifestly smooth. Let p0 ∈ PU with π(p0) = (m0, k0) ∈ U × K . Choose an open
neighbourhood V of k0 in K with a local section s : V → H of β . Because T → R is a locally trivial L-bundle, the map
τ : T ×R T → L defined by t1τ(t1, t2) = t2 is smooth. The restriction ψ−1 to V is the smooth map V → U × β−1(V ) given
by p → (πU(p), s(πK (p))τ (σ (πK (p))s(πK (p)), p)), where πU and πK are the natural projections onto U and K respectively.
We have established the desired local triviality. �

3.2. The unframed caloron correspondence for fibrations

We wish to define the correspondences which establish the bijection between isomorphism classes of the following
objects.

• G-bundlesP → Y of type Q → X and;
• Aut(Q )-bundles P → M with an isomorphism of spaces overM from P ×Aut(Q ) X → M to Y → M .

We start with P → Y a G-bundle of type Q → X . If Z is a space on which G acts on the right (possibly trivially)
denote by Eq(Q , Z) the space of all G-equivariant maps. If G acts trivially on Z then Eq(Q , Z) = Map(X, Z). Thinking of
Eq(Q , ) as a functor apply it to P → Y . Denote by MapQ (X, Y ) ⊂ Map(X, Y ) the image of Eq(Q ,P) under the map
Eq(Q ,P) → Map(X, Y ). We claim that Eq(Q ,P) → MapQ (X, Y ) is a G-bundle, noting that Eq(Q ,G) = G. To establish
local triviality, pick m ∈ M and choose a contractible open neighbourhood U which can be contracted to m. Because U
is contractible it follows that YU = π−1(U) ≃ U × X . Moreover we have that the restriction of P to Ym ≃ {m} × X is
isomorphic to Q and so by contractibility of U it follows thatPU , the restriction ofP to YU , is diffeomorphic to U × Q . Then
Eq(Q ,PU) ≃ Map(X,U)×Aut(Q ) andMapQ (X, YU) ≃ Map(X,U)×DiffQ (X) and the projection is the product of the identity
onMap(X,U)with the projection on Aut(Q ) → DiffQ (X). Local triviality then follows from the fact that Aut(Q ) → DiffQ (X)
is a principal G-bundle [8].

Define η : F(Y ) → Map(X, Y ) by recalling that elements of Fm(Y ) are maps X → Ym ⊂ Y . Then η∗(Eq(Q ,P)) → F(Y ) is
a G-bundle and F(Y ) → M is a DiffQ (X)-bundle. It follows that there is a projection η∗(Eq(Q ,P)) → M which we describe
as follows. An element of η∗(Eq(Q ,P)) is a G-bundle mapf : Q → P covering some frame f : X → Y . In fact ifPm denotes
the restriction ofP to Ym, then the fibre of η∗(Eq(Q ,P)) above m ∈ M consists of all G-bundle isomorphisms from Q → X
toP → Ym which cover a frame X → Ym. That is

(η∗(Eq(Q ,P)))m = Eq(Q ,Pm).
We can apply Proposition 3.1 to the case of the exact sequence (2.1) if we can show that the G-action on η∗(Eq(Q ,P))

extends to an Aut(Q )-action. If ρ̂ ∈ Aut(Q ) is a lift to ρ ∈ DiffQ (X), then we can make ρ̂ act on f̂ by pre-composition and
this extends the G-action. We denote

C(P) = η∗(Eq(Q ,P))
thought of as an Aut(Q )-bundle.

To see that this is a locally trivial Aut(Q )-bundle, let us choose again U ⊂ M contractible so that YU ≃ U × X andP
restricted to YU is diffeomorphic to U × Q . If we consider now the construction just defined, we will see that there is a
natural isomorphism from C(P) restricted to U to U × Aut(Q )which gives a local trivialisation.

To complete the correspondence as described in the previous section, we need to describe the isomorphism

C(P)×Aut(Q ) X → Y

of fibre bundles over M . An element of the first space over m ∈ M has the form [(f̂ , f ), x] where f : X → Ym is a frame. We
map this to f (x) ∈ Ym. The action of (ρ̂, ρ) is given by ((f̂ ◦ ρ̂, f ◦ ρ), ρ−1(x))which maps to f (ρ(ρ−1(x))) = f (x).

Consider now the reverse direction. We start with an Aut(Q )-bundle P → M with an isomorphism of spaces over M
from P ×Aut(Q ) X → M to Y → M . Consider the map

P ×Aut(Q ) Q → P ×Aut(Q ) X .

Because Aut(Q ) acts by bundle automorphisms we have a natural action of G on P ×Aut(Q ) Q by [p, q]g = [p, qg]. It is
straightforward to check that this makes

C−1(P) = P ×Aut(Q ) Q → P ×Aut(Q ) X = Y

a G-bundle.
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In this case we can assume that locally we have P → M of the form U × Aut(Q ) → U so that the bundle

C−1(P) = P ×Aut(Q ) Q → P ×Aut(Q ) X

locally looks like

U × Aut(Q )×Aut(Q ) Q → U × Aut(Q )×Aut(Q ) X

or

U × Q → U × X .

We can now use the local triviality of Q → X as a G-bundle to establish that C−1(P) → Y is locally trivial.
The correspondences C and C−1 are best understood as in [3] as functors between the obvious categories of objects and

morphisms althoughwewill not pursue that perspective in the present discussion. They are not inverses in the set-theoretic
sense but only in the categorical sense. That is C−1

◦C(P) ≃ P and C ◦C−1(P) ≃ P . We construct these isomorphisms next.
We start withP → Y a G-bundle of type Q → X and recall that

C(P)m = Eq(Q ,Pm)
applying C−1 we have

C−1
◦ C(P) = Eq(Q ,Pm)×Aut(Q ) Q .

There is a natural map from this space toPm given by [ψ, q] → ψ(q) which defines a smooth isomorphism of G-bundles
which we denote

τP : C−1
◦ C(P) → P. (3.2)

In the other direction let P → M be an Aut(Q )-bundle. Then

C−1(P) = P ×Aut(Q ) Q

so that

C ◦ C−1(P)m = Eq(Q , Pm ×Aut(Q ) Q ).

There is a natural map

Pm → Eq(Q , Pm ×Aut(Q ) Q )

defined by p → (q → [p, q])which extends to an isomorphism of Aut(Q )-bundles

τP : C ◦ C−1(P) → P. (3.3)

From the categorical viewpoint both these isomorphisms are natural transformations.

3.3. The unframed caloron correspondence for products

In the case that the fibration is a product Y = M × X the caloron correspondence becomes a bijection between
isomorphism classes as follows.

• G-bundlesP → M × X of type Q → X and;
• G-bundles P → M .

This can be deduced from the general case as follows. Firstly as G ⊂ Aut(Q ), we can apply the construction as before to
P to obtainP = C−1(P). But in this case we have

C−1(P) = (P × Q )/G → (P × X)/G = M × X

as G acts trivially on X .
Secondly, in the other direction, consider the fibre of C(P)m which is

Eq(Q ,Pm).
Because Y = X × M we can pick out in here the subset of isomorphisms Q → Pm which cover the obvious inclusion
X → X × M, x → (x,m). This is naturally acted on by G and the result is a reduction of the Aut(Q )-bundle to G which we
denote by C(P). Alternatively note that with the previous construction we obtained a G-bundle

η∗(Eq(Q ,P)) → F(Y ) = X × DiffQ (X)

because Y = X × M . Then we can pull back this G-bundle with the obvious section of X × DiffQ (X). Finally using the map
η̄ : M → Eq(X,M × X) given bym → (x → (m, x)), we get C(P) = η̄∗(Eq(Q ,P)).
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3.4. The framed caloron correspondence for fibrations

We sketch briefly the correspondences in the framed case. We want to show that there is a bijection between
isomorphism classes as follows.

• Framed G-bundlesP → Y over a framed fibration Y → M of framed type Q → X and;
• Aut0(Q )-bundles P → M with a framed isomorphism of framed spaces overM from P ×Aut0(Q ) X → M to Y → M .

It suffices to show how to define the framings on the transformed objects. Consider C(P)whose fibre at m ∈ M is

C(P)m = Eq(Q ,Pm).
But now both sides have basepoints so we can restrict to those isomorphisms preserving the basepoints and call this

Eq0(Q ,Pm) ⊂ Eq(Q ,Pm),
which defines a reduction to Aut0(Q ). Consider the isomorphism P ×Aut0(Q ) X → M to Y → M which we have defined
above to be

[(ψ̂, ψ), x] → ψ(x).

The framing of the first space is given by the basepoint [(ψ̂, ψ), x0] and ψ preserves basepoints so that [(ψ̂, ψ), x0] maps
to ψ(x0)which must be the basepoint.

In the other direction the construction of C−1(P) is

C−1(P) = P ×Aut0(Q ) Q → P ×Aut0(Q ) X ≃ Y

and both P ×Aut0(Q ) Q and P ×Aut0(Q ) X have natural framings coming from the basepoints of Q and P and the fact that these
are preserved by Aut0(Q ).

We leave it as an exercise to show that the isomorphisms C ◦ C−1(P) ≃ P and C−1
◦ C(P) ≃ P preserve the framings

just defined.

3.5. The framed caloron correspondence for products

If the fibration is a product Y = M × X then this becomes a bijection between isomorphism classes as follows.

• Framed G-bundlesP → M × X of type Q → X and;
• G0-bundles P → M .

We leave this case also as an exercise for the reader.

4. The caloron correspondence with connections and Higgs fields

In this section we will extend the various caloron correspondences from the previous sections to include the data of
connections on the bundles involved.

4.1. Introduction

Before considering how to extend the caloron correspondence to a correspondence for bundles with connections, we
need to recall some facts about principal bundles and to introduce some notation. If π : P → M is a principal L-bundle
we denote the right action of l ∈ L on P by Rl : P → P and the induced action on forms and tangent vectors R∗

l and (Rl)∗
respectively. If λ ∈ l = TeL the Lie algebra of L, then λ defines a so-called fundamental vector field at any p ∈ P which we
denote by ιp(λ). Writing t0(t → γ (t)) for the tangent to the map γ at t = 0, we have

ιp(λ) = t0(t → p exp(tλ)) ∈ TpP.

If l ∈ L then (Rl)∗(ιp(λ)) = t0(t → p exp(tλ)l) = t0(t → pl(l−1) exp(tλ)l) = ιpl(ad(l−1)(λ)). A connection one-form ω on
P is an l-valued one-form on P satisfying ωp(ιp(λ)) = λ and R∗

l (ω) = ad(l−1)ω.
If L is a subgroup of H which also acts freely on the right of P , extending the action of L, the connection ω is called

H-invariant if it is fixed by H . A straightforward calculation shows the following lemma.

Lemma 4.1. The connection ω is H-invariant if and only if

R∗

h(ω) = ad(h−1)ω.

Consider a fibration π : Y → M with fibre X and F(Y ) its associated frame bundle which is a principal DiffQ (X)-bundle.
We denote by T vy Y the vertical tangent vectors or the tangents to the fibres of π at y ∈ Y . A connection a on Y is a
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complementary subspace to T vy at every y or, equivalently a projection va : TyY → T vy Y . A choice of connection on Y → M
defines a connection on F(Y ) as follows. The tangent space to f ∈ F(Y ) is the subspace of Γ (X, f ∗(TY )) of vectors whose
projection to Tπ(f )M is constant. The Lie algebra of DiffQ (X) isΓ (X, TX). If ξ ∈ Γ (X, f ∗(TY )) is a tangent vector then va(ξ(x))
is a vertical vector at f (x). We have f : X → Yπ(f (x)) a diffeomorphism so we can define af (ξ) ∈ Γ (X, TX) by

af (ξ)(x) = (f −1)∗(va(ξ(x))).

Equivalently ξ is horizontal if and only if ξ(x) is horizontal for all x ∈ X .

4.2. Principal bundles with connections and extensions

First we need to reconsider the discussion from Section 3.1 taking into account connections on the bundles in question.
We have the same structure as before. An exact sequence of groups

1 → L
α
−→ H

β
−→ K → 1

and a commutative diagram

S

R

M

H

L

K

��?
??

??
?

�� ����
��

�
(4.1)

If we fix a point s ∈ Sm, the fibre of S abovem ∈ M , there is an H-equivariant isomorphism

H

K

Sm

Rm

h

k

sh

π(s)β(h)
�� ��

//

//

_

��

_

��

� //

� //
(4.2)

determined by the choice of s. Here π is the projection S → R. The L-bundle H → K has two H-actions given by left and
right multiplication. We are interested in the right action which does not commute with the L-action but extends it. An H-
invariant connection for this action is determined by its value at the identity in H which is a splitting of the exact sequence
of Lie algebras

0 → l
α
−→ h

β
−→ k → 0. (4.3)

Let Split(h, k) denote the affine space of all right splittings of (4.3). We define a left action of H on σ ∈ Split(h, k) by
hσ = ad(h)σ ad(β(h)−1). To extend Proposition 3.1 we first need the following Definition.

Definition 4.2. If S → M is an H-bundle, a Higgs field is a sectionΦ of the associated bundle S ×H Split(h, k) or equivalently
a functionΦ : S → Split(h, k) satisfying

Φ(sh) = ad(h−1)Φ(s) ad(β(h)).

Recall that a right splitting of the exact sequence (4.3) gives rise to a left splitting and vice-versa. Occasionally we will
need to distinguish between these and we will use the notationΦr andΦ l for right and left splittings respectively. They are
related by

Φrβ + αΦ l
= idh . (4.4)

For the moment it is most natural to use right splittings for the value of the Higgs field but we warn the reader that from
Proposition 4.6 onwards we will be assuming the Higgs field is a left splitting. We will also adopt the convention that α is
an inclusion and hence not explicitly referred to.

The reason for introducing the Higgs field is the following. If we start with a connection ωH on S → M then it is an
h-valued one-form on S. It defines, in standard fashion, a connectionωK on the associated bundle R → M which is a k valued
one-form on R. If we introduce an H-invariant connection ωL on S → R then this is an l-valued one-form on S and these
objects are related by the equation

ωH
= ωL

+ Φ(π∗ωK ) (4.5)
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where we have denoted the projection S → R by π and have used the fact that Φ(s) : k → h for all s ∈ S. This equation
gives a correspondence between connections on the one hand and connections and Higgs fields on the other hand, which
we establish in detail in the next proposition.

Proposition 4.3. Fix a principal K-bundle R → Mwith connectionωK .We have a bijective correspondence between isomorphism
classes of the following objects:

(1) Principal H-bundles S → M, with S/L → M isomorphic to R → M as K-bundles with connection ωH , which projects to ωK

under the isomorphism, and Higgs fieldΦ; and
(2) Principal L-bundles T → R which are H-equivariant for the H-action on R induced by the K-action on R using the

homomorphism β , with connection ωL which is H-invariant.

Proof. Weassume the isomorphisms fromProposition 3.1 are in place so it is just a question of constructing the connections.
As noted above for convenience we regard l as included in h and suppress the function α and we expect the various
connections and the Higgs field to be related by Eq. (4.5). We have from Lemma 4.1 that H-invariance of ωL is equivalent to
R∗

hω
L

= ad(h−1)ωL. Notice that this make sense because ad(h−1)(l) = l and that if h ∈ L this is just part of the condition
satisfied by any connection.

First we do the forwards direction. Assuming thatωH andΦ are given, we show that the one-formωL defined by Eq. (4.5)
is an H-invariant connection on S → R. Let λ ∈ l and s ∈ S, then

ωL
s


ιLs(λ)


= ωH

ιLs(λ)

− Φ(s)


ωK
β(s)(π∗(ι

L
s(λ)))


= ωH

ιHs (α(λ))

− Φ(s)


ωK
β(s)(0)


= λ

as required. Letting h ∈ H and ξ ∈ TsS we have

α

(R∗

hω
L
sh)(ξ)


= α


ωL

sh((Rh)∗(ξ))


= ωH
sh


(Rh)∗(ξ)


− Φ(sh)


ωK
π(s)β(h)((Rβ(h))∗(π∗(ξ)))


= ad(h−1)ωH

s (ξ)− ad(h−1)Φ(s) ad(β(h)) ad(β(h)−1)ωK
π(s)(π∗(ξ))

= ad(h−1)

ωH

s (ξ)− Φ(s)(π∗(ωK
s (ξ)))


= ad(h−1)(ωL

s )(ξ).

Hence R∗

hω
L
= ad(h−1)ωL and we conclude that ωL is an H-invariant connection on S → R.

Consider the reverse direction.We are givenωL which isH-invariant andwewish tomanufactureΦ and defineωH using
Eq. (4.5). We define Φ as follows. Let s ∈ S and κ ∈ k. Consider ιKπ(s)(κ) ∈ Tπ(s)R and lift it to a horizontal vector ιKπ(s)(κ) at
s ∈ S using ωL. The projection of this vector toM is the projection of ιKπ(s)(κ) toM which is zero, so it must be vertical for H .
Hence we can defineΦ(s) : k → h by

ιHs (Φ(s)(κ)) =
ιKπ(s)(κ).

We need to check that this is a Higgs field. First we check it splits. We have

ιKπ(s)(κ) = π∗

 ιKπ(s)(κ)


= π∗


ιHs (Φ(s)(κ))


= ιKπ(s)


β(Φ(s)(κ))


,

where the last line follows from the fact that the H-action on S covers the H-action on R induced by β : H → K . Thus we
have

κ = β

Φ(s)(κ)


as required. Next we check that it transforms correctly:

ιHsh

ad(h−1)Φ(s)(κ)


= (Rh)∗


ιHs (Φ(s)(κ))


= (Rh)∗

 ιKπ(s)(κ)


=
(Rβ(h))∗


ιKπ(s)(κ)


=

ιKπ(sh)

ad(β(h)−1)(κ)


= ιHsh


Φ(sh)


(ad(β(h)−1)(κ))


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hence

Φ(sh) = ad(h−1)Φ(s) ad(β(h)).

It remains to show that ωH defined by Eq. (4.5) is a connection. First we show that ωH
s (ι

H
s (η)) = η for all η ∈ h. For such an

η we have

η = λ+ Φ(s)(β(η))

for some λ ∈ l. Again we suppress α : l → h. It follows that

ιHs (η) = ιHs (λ)+ ιHs (Φ(s)(β(η)))

= ιLs(λ)+
ιKπ(s)(β(η))

and thus we have

ωH
s (ι

H
s (η)) = ωL

s (ι
H
s (η))+ Φ(s)(ωK

π(s)π∗(ι
H
s (η)))

= ωL
s (ι

L
s(λ))+ ωL

s (
ιKπ(s)(β(η)))+ Φ(s)(ωK

π(s)π∗(ι
L
s(λ)))+ Φ(s)(ωK

π(s)π∗(
ιKπ(s)(β(η))))

= ωL
s (ι

L
s(λ))+ 0 + 0 + Φ(s)(ωK

π(s)(ι
K
π(s)(β(η))))

= λ+ Φ(s)(β(η))
= η.

Next we establish the right equivariance of the connection form, R∗

hω
H
sh = ad(h−1)ωH

s . Let ξ ∈ TsS and write

ξ = ξ̂ + ιs(λ)

where ξ̂ is horizontal for ωL and λ ∈ l. Then

(Rh)∗(ξ) = (Rh)∗(ξ̂ )+ ιsh(ad(h−1)(λ))

and (Rh)∗(ξ̂ ) is horizontal as ωL is H-invariant. We have

(R∗

hω
H
sh)(ξ) = ωH

sh ((Rh)∗(ξ))

= ωL
sh ((Rh)∗(ξ))+ Φ(sh)


ωK
π(s)β(h)(π∗((Rh)∗(ξ)))


= ωL

sh


(Rh)∗(ξ̂ )


+ ωL

sh


ιsh(ad(h−1)(λ))


+ Φ(sh)


ωK
π(s)β(h)(π∗((Rh)∗(ξ)))


= 0 + ωL

sh((Rh)∗ιs(λ))+ Φ(sh)

ωK
π(s)β(h)((Rβ(h))∗π∗(ξ))


= ad(h−1)ωL

s (λ)+ ad(h−1)Φ(s)

ad(β(h)) ad(β(h)−1)ωK

π(s)(π∗(ξ))


= ad(h−1)ωL
s (ξ)+ ad(h−1)Φ(s)


ωK
π(s)(π∗(ξ))


= ad(h−1)ωH

s (ξ)

as required.
We leave it as an exercise for the reader to show that when we apply the bijection twice the isomorphisms introduced

in Proposition 3.1 preserve the connections defined here. �

For the caloron correspondence we need the following slightly more complicated version of Proposition 4.3. Choose an
affine subspace Split(h, k)0 ⊂ Split(h, k)which is invariant under the action of H . Using the same notation as before we say
a connection ωL is a Split(h, k)0-connection if the corresponding Higgs field takes its values in Split(h, k)0. It is then obvious
that we have

Corollary 4.4. Fix a principal K-bundle R → M with connection ωK . We have a bijective correspondence between isomorphism
classes of the following objects:

(1) Principal H-bundles S → M, with S/L → M isomorphic to R → M as K-bundles with connection ωH , which projects to ωK

under the isomorphism, and Higgs fieldΦ : S → Split(h, k)0; and
(2) principal L-bundles T → R which are H-equivariant for the H-action on R induced by the K-action on R using the

homomorphism β , with a Split(h, k)0-connection ωL which is H-invariant.
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4.3. The unframed caloron correspondence for fibrations with connections and Higgs fields

Let a be a connection on F(Y ) → M , where F(Y ) is the principal DiffQ (X)-bundle associated to Y . This induces a
connection also on Y . We wish to show that there is a bijection between isomorphism classes of

• G-bundlesP → Y of type Q → X with connectionA and connection a for F(Y ) → M and;
• Aut(Q )-bundles P → M with Higgs field Φ and connection A and isomorphism of X fibrations from P ×Aut(Q ) X to Y

which sends the connection A to a.

Wewill prove this result using the constructions from Section 3.2 and Corollary 4.4. Recall that in that case the extension
of groups is given by (2.1)

1 → G → Aut(Q ) → DiffQ (X) → 1.

The corresponding sequence of Lie algebras is

0 → Γ (X, ad(Q )) → Γ (X, TQ/G) → Γ (X, TX) → 0, (4.6)

which is the functor Γ (X, ) applied to the Atiyah sequence [10] of Q → X given by

0 → ad(Q ) → TQ/G → TX → 0. (4.7)

Remark 4.1. We note for later use that we can identify Γ (X, ad(Q )) = ΓG(Q , g), the space of G-equivariant maps from Q
into g and Γ (X, TQ/G) = ΓG(Q , TQ ), the space of G-equivariant vector fields on Q . The inclusion map of the former into
the latter then maps a function µ : Q → g into the vector field q → ιq(µ(q)).

Recall that a connection on Q → X is a splitting of the Atiyah sequence (4.7) with a right splitting corresponding to a
horizontal distribution and a left splitting to a connection one-form on Q . A splitting of (4.7) also induces a splitting of (4.6),
which in turn induces an Aut(Q )-invariant connection on Aut(Q ) → DiffQ (X). We take as Split(Γ (X, TQ/G),Γ (X, TX))0
only those splittings arising in this way and we denote them by A. It is straightforward to check that A is an affine subspace
invariant under Aut(Q ) and we are in the setting of Corollary 4.4. Note also that in this situation a Higgs field is an Aut(Q )-
equivariant map from P into splittings of the sequence (4.6). In fact, as we shall see below the construction of the Higgs field
from the proof of Proposition 4.3 adapted to this context naturally takes values in Split(Γ (X, TQ/G),Γ (X, TX))0 = A. Thus,
we can view the Higgs field as an Aut(Q )-equivariant map P → A, or equivalently a section of P ×Aut(Q ) A.

Proposition 4.5. Let f ∈ Eq(Q ,P) andΦ be the Higgs field as constructed in Proposition 4.3. The value of Φ(f ) is the connection
f ∗(A).
Proof. We have f : Q → Pm covering f̄ : X → Ym. Following the definition of the Higgs field above we take µ ∈ Γ (X, TX)
and choose a one-parameter family of diffeomorphisms in DiffQ (X), χt : X → X such that χ0 = idX and χ ′

t (0) = µ. We
have

ιf (η) = t0(t → f ◦ χt) ∈ Tf (F(Y )).

The construction of Φ(f ) implies that there is a one-parameter family of bundle automorphisms χ̂t : Q → Q such that
χ̂0 = idQ , χ̂t covers χt and Eq(Q ,A)f ((f ◦ χ̂t)

′(0)) = 0 which is equivalent toAf (q)((f ◦ χ̂t(q))′(0)) = 0 for all q ∈ Q . The
splittingΦ(f ) of (4.6) is therefore the map µ → χ̂ ′

t (0). But becauseAf (q)((f ◦ χ̂t(q))′(0)) = 0 for all q ∈ Q , we see that this
must be a splitting in A and one which is associated to the connection one-form f ∗(A). �

We also note that in this situation the equivariance condition on the Higgs field is particularly nice.

Proposition 4.6. LetΦ be aHiggs field for anAut(Q )-bundle P, viewed as amap P → A. Then the condition fromDefinition4.2 is
equivalent to

Φ(pψ) = ψ∗Φ(p),

where ψ ∈ Aut(Q ) and β : Aut(Q ) → DiffQ (X).

Proof. First note that if we view Φ as a connection one-form for each p ∈ P , then what we called the Higgs field in
Definition 4.2 is really the associated splitting Γ (X, TX) → Γ (X, TQ/G). That is, the Higgs field is the assignment of
horizontal subspaces of TQ at eachpoint inQ . To avoid confusion for this proofwedenote this splittingΦr and the connection
one-form byΦ l. They are related by (4.4). Then by definition the image ofΦr is the kernel of the one-formΦ l.

We wish to show that the connection one-form corresponding to the splitting ad(ψ−1)Φr ad(β(ψ)) is ψ∗Φ l. It
is straightforward to check that ψ∗Φ l is a connection one-form so we just need to show that ψ∗Φ l annihilates
ad(ψ−1)Φr ad(β(ψ))


(ξ) for ξ a vector field on X . The adjoint action of Aut(Q ) on an element µ in its Lie algebra,

Lie(Aut(Q )) = Γ (X, TQ/G) is given by ad(ψ)(µ)q = ψ∗µψ−1(q). Similarly, if ξ ∈ Lie(DiffQ (X)) then ad(β(ψ))(ξ)x =
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β(ψ)∗ξβ(ψ)−1(x). Notice that this implies that ifω is a one-form on Q and ζ is a vector field on Q then (ψ∗ω)q(ad(ψ−1)ζq) =

ωψ(q)(ψ∗(ψ
−1
∗
ζ )ψ(q)) = ωψ(q)(ζψ(q)). Letting ζ = ΦH ad(β(ψ))(ξ)we note thatΦ(ζ ) = 0 and then we have

(ψ∗Φ l)

ad(ψ−1)Φr ad(β(ψ))


(ξ) = Φ l(ζ ) = 0

as required. �

We note that from now on the default choice for the value of a Higgs fieldΦ will be that it is a connection one-form, that
is a left-splitting. When this is not the case we will writeΦr .

Now we are in a position to extend the caloron correspondence to include connections and Higgs fields. We start with
a G-bundleP → Y of type Q → X . We have seen above that Eq(Q ,P) → MapQ (X, Y ) is a G-bundle. We can apply the
functor Eq(Q , ) to the connectionA to obtain a connection Eq(Q ,A). Indeed if ρ ∈ Tf (Eq(Q ,P)) then ρ ∈ ΓG(Q , f ∗(TP)),
so for any q ∈ Q we have ρq ∈ Tf (q)P and we define

Eq(Q ,A)f (ρ) = (q → Af (q)(ρq)) ∈ Γ (X, ad(Q )).

Proposition 4.7. In the situation just described Eq(Q ,A) is an A-connection which is Aut(Q )-invariant on the G-bundle
Eq(Q ,P) → MapQ (X, Y ).

Proof. Consider first what happens when we apply Eq(Q ,A) to a vertical vector in the tangent space to Eq(Q ,P) at f . The
tangent space to f is ΓG(Q , f ∗(TQ )) and a vertical vector is generated by an element of the Lie algebra of G which is given
by an equivariant map µ : Q → g. It is a straightforward exercise to check that

ιf (µ)(q) = ιf (q)µ(q)

and then

Eq(Q ,A)f (ιf (µ)) = q → Af (q)(ιf (q)µ(q)) = µ(q)

or Eq(Q ,A)f (ιf (µ)) = µ.
To check invariance under Aut(Q ) we first need to understand the adjoint action of Aut(Q ) on G and its Lie algebra.

If g ∈ G then g : Q → G and it acts on Q by q → qg(q). If ψ ∈ Aut(Q ) then ψ−1gψ acts on Q by sending q ∈ Q
to ψ−1(ψ(q)g(ψ(q))) = qg(ψ(q)) or ad(ψ−1)(g) = g ◦ ψ . Hence if µ : Q → g is in the Lie algebra of G we have
ad(ψ−1)(µ) = µ ◦ ψ . Let ft ∈ Eq(Q ,P)with f0 = f and ρ = t0(t → ft) ∈ Tf (Eq(Q ,P)). We have

R∗

ψ (Eq(Q ,A))f (ρ)(q) = Eq(Q ,A)f ◦ψ (t0(t → ft ◦ ψ))(q)

= Af (ψ(q))

t0(t → ft(ψ(q)))


= Eq(Q ,A)f (ρ)(ψ(q))
= ad(ψ−1(q)) Eq(Q ,A)f (ρ)

as required. Proposition 4.5 implies that the associated Higgs field is valued in A and so this is an A-connection. �

The pullback of the connection Eq(Q ,A) using η : F(Y ) → Map(X, Y ) is therefore an Aut(Q )-invariant connection on
the G-bundle η∗(Eq(Q , P)) → F(Y ).

It follows from Corollary 4.4 that we have a connection A on P → M defined by

A = η∗(Eq(Q ,A))+ Φr(π∗a) (4.8)

where π : P → F(Y ).
Putting this all together with the results from Section 4.1 we have the following theorem.

Theorem 4.8. Let P → Y be a G-bundle of type Q → X with connectionA and let a be a connection for Y → M. Then the
Aut(Q )-bundle P → M has connection A and Higgs fieldΦ defined as follows.

• Let f ∈ P so that f : Q → Pm for some m ∈ M, thenΦ(f ) = f ∗(A).
• If ρ ∈ Γ (Q , f ∗(TP)), let f̄ : X → Ym and ρ̄ ∈ Γ (X, f̄ ∗(TY )) be the projections of f and ρ respectively. Then Af (ρ) ∈

ΓG(Q , TQ ) is given by

Af (ρ)(q) = Af (q)(ρ(q))+ Φr(f )

x → (f̄ −1)∗(va(ρ̄(x)))


(q)

where, as before,Φr(f ) : Γ (X, TX) → ΓG(Q , TQ ) is the right splitting induced by the connectionΦ(f ) = f ∗(A).



P. Hekmati et al. / Journal of Geometry and Physics 62 (2012) 224–241 235

Consider the caloron transform in the other direction. Given an Aut(Q )-bundle P → M we define Y = P ×Aut(Q ) X and
a G-bundleP → Y byP = P ×Aut(Q ) Q . Recall that the Lie algebra of Aut(Q ) is ΓG(Q , TQ ), the Lie algebra of G-equivariant
vector fields on Q . The tangent space at (p, q) ∈ P × Q is

T(p,q)(P × Q ) = TpP × TqQ

and the vertical vector induced by µ ∈ Lie(Aut(Q )) is given by (ιp(µ),−µ(q)).
Let A be a connection one-form on P . That is, A is an Lie(Aut(Q ))-valued one-form on P so that if ξ ∈ TpP then

Ap(ξ) ∈ Lie(Aut(Q )) = ΓG(Q , TQ ) and thus Ap(ξ)(q) ∈ TqQ . As above a Higgs field for P → M is an equivariant map
Φ : P → A, so we have

Φ(p)q

Ap(ξ)(q)


∈ g.

We defineω(p,q)(ξ , ζ ) = Φ(p)q

Ap(ξ)(q)+ ζ


(4.9)

on the product P × Q and we have the following theorem.

Theorem 4.9. Let P → M be an Aut(Q )-bundle with connection A and Higgs fieldΦ . The one-formω defined in (4.9) on P × Q
descends to a connection one-formA on the G-bundleP → Y .

Proof. We have to show that the one-formω(p,q)(ξ , ζ ) = Φ(p)q

Ap(ξ)(q)+ ζ


descends to a connection one-formA on the G-bundleP → Y .

First we show that ω annihilates vectors generated by the action of Aut(Q ) on P × Q . In the tangent space at (p, q) such
vectors have the form (ιp(µ),−µ(q)) for some µ ∈ ΓG(Q , TQ ) and we haveω(p,q)(ιp(µ),−µ(q)) = Φ(p)q(Ap(ιp(µ))(q)− µ(q))

= Φ(p)q(µ(q)− µ(q))
= 0.

Next we show thatω is invariant under the Aut(Q )-action. Let ψ ∈ Aut(Q ) then

(R∗

ψω)(p,q)(ξ , ζ ) = ω(pψ,ψ−1(q))

(Rψ )∗(ξ), (ψ−1

∗
)q(ζ )


= Φ(pψ)ψ−1(q)


(Ap(Rψ (ξ)))(ψ−1(q))+ (ψ−1

∗
)q(ζ )


= Φ(pψ)ψ−1(q)


ad(ψ−1)(Ap(ξ))(ψ

−1(q))+ (ψ−1
∗
)q(ζ )


= (ψ∗Φ(p))ψ−1(q)


(ψ−1

∗
)q(Ap(ξ)(q)+ ζ )


= Φ(p)q


(ψ∗)q(ψ

−1
∗
)q(Ap(ξ)(q)+ ζ )


= Φ(p)q(Ap(ξ)(q)+ ζ )

= ω(p,q)(ξ , ζ )
as required.

It follows thatω descends to a g-valued one-form onP which we denote byA. We need to check that this is a connection
one-form. Notice that G acts on P × Q by acting on Q and that this commutes with the action of Aut(Q ) covering the action
onP . If ι[p,q](χ) is a vertical vector inP it lifts to (0, ιq(χ)) at (p, q). Applyingω(p,q) we haveω(p,q)(0, ιq(χ)) = Φ(p)q(0 + ιq(χ)) = χ.

HenceA(ι(χ)) = χ . Let g ∈ G, then we have

(R∗

gω)(p, q)(ξ , ζ ) = ω(p,qg)(ξ , (Rg)∗(ζ ))

= Φ(p)qg

Ap(ξ)(qg)+ (Rg)∗(ζ )


= Φ(p)qg


(Rg)∗(Ap(ξ)(q)+ ζ )


= ad(g−1)Φ(p)q(Ap(ξ)(q)+ ζ )

= ad(g−1)ω(p,q)(ξ , ζ )
so that R∗

g
A = ad(g−1)A. Here we use the fact that Ap(ξ) ∈ ΓG(Q , TQ ), so it satisfies Ap(ξ)(qg) = (Rg)∗(Ap(ξ)(q)). �

The final thing we need to do is to show that when we apply the caloron transform twice in either direction the
connections map to each other under the isomorphisms introduced in Section 3.2.
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Proposition 4.10. Let P → Y be a G-bundle of type Q → X with connectionA and let a be a connection for Y → M. Let
P → M be an Aut(Q )-bundle with connection A and Higgs fieldΦ . Let the caloron transforms be as in Theorems 4.9 and 4.8. Then
the isomorphism (3.2)

τP : C−1
◦ C(P) → P

preserves connections and the isomorphism (3.3)

τP : C ◦ C−1(P) → P

preserves connections and Higgs fields.

Proof. Consider first the case that we start with a G-bundleP → Y with a connectionA. The isomorphism in question goes
from η∗(Eq(Q ,P))×Aut(Q ) Q toP and is given by (f , q) → f (q). Under this isomorphismA pulls back to a connection on
η∗(Eq(Q ,P))×Aut(Q ) Q which we further pullback to η∗(Eq(Q ,P))× Q . We note that

T(f ,q)η∗(Eq(Q ,P))× Q = ΓG(Q , f ∗(P))× TqQ

and the pullback ofA applied to a pair (ρ, ζ ) isAf (q)(ρ(q)+ f∗(ζ )) = Af (q)(ρ(q))+ Φ(f )q(ζ ).

Consider now the connection constructed on η∗(Eq(Q ,P)) × Q by applying the constructions above twice. First the
connectionA gives rise to a connection

A = η∗ Eq(Q ,A)+ Φr(π∗a)

and the Higgs field identified in Proposition 4.5.
The pair (A,Φ) gives rise to a g-valued one-form on η∗(Eq(Q ,P))× Q given byω(f ,q)(ρ, ζ ) = Φ(f )q


Af (ρ)(q)+ ζ


= Φ(f )q


η∗ Eq(Q ,A)f (ρ)(q)+ Φ(a(π∗(ρ)))+ ζ


= Φ(f )q

Af (q)(ρ(q))

+ Φ(f )q


Φ(a(π∗(ρ)))


+ Φ(f )q(ζ ).

Notice that under the identifications we are using (see Remark 4.1)Af (q)(ξ(q)) is a vertical vector in Q and already identified
with a vector in g, so there is no need to apply Φ(f )q. Further the vector Φ(a(π∗(ρ))) is horizontal for A, so applying
Φ(f ) = f ∗(A) gives zero. Hence we haveω(f ,q)(ρ, ζ ) = Af (q)(ρ(q))+ Φ(f )q(ζ )

as required.
Consider the second case where we start with an Aut(Q )-bundle P → M with connection A and Higgs field Φ . From

these we construct a G-bundle

P ×Aut(Q ) Q → P ×Aut(Q ) X

with connectionA whose pullback to P × Q we have calledω defined by (4.9):ω(p,q)(ξ , ζ ) = Φ(p)q

Ap(ξ)(q)+ ζ


.

From this we construct the Aut(Q )-bundle η∗(Eq(Q , P ×Aut(Q ) Q )) → M with connection A′ and Higgs field (Φ ′)r where

A′
= η∗(Eq(Q ,A))+ (Φ ′)r(π∗a).

Each p ∈ P defines a naturalmap fp : Q → P ×Aut(Q ) Q by fp(q) = [p, q] andχ(p) = fp is the isomorphismof Aut(Q )-bundles
defined in Section 3.2:

χ : P → η∗(Eq(Q , P ×Aut(Q ) Q )).

We want to show that under this isomorphism A′ andΦ ′ pullback to A andΦ .
First we consider Φ ′. From Proposition 4.5 we have that at p the pullback of Φ ′ is f ∗

p (
A). The frame fp : Q → P ×Aut(Q ) Q

lifts to Q → P × Q sending q → (p, q) and the tangent to this is ζ → (0, ζ ). Applyingω givesΦ(p)q(ζ ) as required.
To calculate the pullback of A′ by χ we need to consider the tangent map to χ applied to ξ ∈ TpP . The result is a section

in ΓG(Q , f ∗
p (P ×Aut(Q ) Q ))which we can lift to P × Q and realise as q → (ξ , 0) ∈ TpP × TqQ . Considering the first term in A′

we have

η∗(Eq(Q ,A))(p,q)(ξ , 0) = Φ(p)q(Ap(ξ)(q)+ 0)
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so that

A′

p(ξ) = Φ(p)(Ap(ξ))+ Φr(p)(a(π∗(ξ , 0))).

But the connection a is the projection of the connection A so we must have

A′

p(ξ) = Φ(p)(Ap(ξ))+ Φr(p)(β(Ap(ξ))).

The relation in Eq. (4.4) then tells us that

A′

p(ξ) = Ap(ξ)

as required. �

4.4. The unframed caloron correspondence for products with connections and Higgs fields

We consider Theorem 4.8 and show how to reduce it in this case. LetP → M × X be a G-bundle of type Q → X with
connectionA. Take as a, the flat connection on X × M → M . We have seen that the Aut(Q )-bundle can be reduced to a
G-bundle P → M , whose fibre at m ∈ M is all diffeomorphisms f : Q → Pm covering X → X × M given by x → (x,m).
Therefore, in the notation of Theorem 4.8, f̄ (x) = (x,m). Let ρ be a tangent vector at f . Then ρ̄(x) = (0, ν) ∈ TxX × TmM
for some constant vector ν ∈ TmM and thus va(ρ̄(x)) = 0 and we have the following reduction of Theorem 4.8.

Theorem 4.11. Let P → X × M be a G-bundle of type Q → X with connectionA. Then the G-bundle P → M has connection A
and Higgs fieldΦ defined as follows.

• Let f ∈ P so that f : Q → Pm for some m ∈ M covering x → (x,m), thenΦ(f ) = f ∗(A).
• If ρ ∈ Γ (Q , f ∗(TP)), then Af (ρ) ∈ ΓG(Q , TQ ) is given by

Af (ρ)(q) = Af (q)(ρ(q)).

Going in the other direction we have a G-bundle P → M with connection A and Higgs fieldΦ and defineP = P ×G Q →

M × X . In this case A is a Lie(G)-valued one-form on P so that if ξ ∈ TpP , then Ap(ξ) ∈ ΓG(Q , g) and applying the Higgs field
has no effect. The formula in the fibration case therefore reduces toω(p,q)(ξ , ζ ) = Ap(ξ)(q)+ Φ(p)q(ζ )

and we have the following theorem.

Theorem 4.12. The one-formω(p,q)(ξ , ζ ) = Ap(ξ)(q)+ Φ(p)q(ζ )

descends to a connection one-formA on the G-bundleP → X × M.

4.5. The framed caloron correspondences with connections and Higgs fields

We leave it to the interested reader to show that in the case of framings the connections we have defined already respect
the framings and the Higgs fields take values in the appropriate space of framed connections.

5. Characteristic classes for gauge group bundles

In this section we shall use the caloron correspondence to calculate characteristic classes for G-bundles, following a
similar approach as in [3]. We begin with a brief review of characteristic classes and the Chern–Weil theory for G-bundles
for the convenience of the reader.

5.1. Review of the Chern–Weil theory

Let EG → BG denote the universal bundle, with the property that any principal G-bundle over M is isomorphic to
the pullback of EG → BG by a classifying map f : M → BG. Up to homotopy equivalence, the universal bundle is fully
characterised by the fact that it is a principalG-bundle and EG is a contractible space. A characteristic class for aG-bundle over
M is a class in H∗(M) obtained by pulling back elements in the cohomology group H∗(BG). The Chern–Weil theory provides
a mechanism for producing characteristic classes in de Rham cohomology. Let Ik(g) denote the algebra of multilinear,
symmetric, ad-invariant functions on k copies of the Lie algebra g. Elements of Ik(g) are called invariant polynomials. The
Chern–Weil homomorphism is a map

cw : Ik(g) → H2k(M)
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defined by f → cwf (A) = f (F , . . . , F), for A a connection on the G-bundle with curvature F . The class cwf (A) ∈ H2k(M) is
independent of the choice of connection and represents a characteristic class of the bundle. For compact Lie groups G, the
Chern–Weil homomorphism applied to the universal bundle is an isomorphism, which extends to an algebra isomorphism
cw : I∗(g)

∼
−→ H∗(BG). The proof of these results can be found in many standard references such as [11].

Since f is multilinear and symmetric, we will adopt the convention that whenever f has repeated entries they will be
collected into one slot and written as a power, for instance f (A, . . . , A  

k

, B, . . . , B  
l

) = f (AkBl).

5.2. The curvature of the caloron connection

The first step towards calculating characteristic classes is to determine the curvature of the caloron connection given
in Theorem 4.12. Recall that Ã is expressed in terms of a connection A and Higgs field Φ as follows. For a tangent vector
(ξ , ζ ) ∈ T[p,q]P we have

Ã(p,q)(ξ , ζ ) = Ap(ξ)(q)+ Φ(p)q(ζ ).

The curvature F̃ of ω̃ is given by the formula

F̃ = dÃ +
1
2
[Ã, Ã].

For a pair of tangent vectors V1 = (ξ1, ζ1), V2 = (ξ2, ζ2) ∈ T[p,q]P , the commutator term is given by

1
2
[Ã(p,q)(V1), Ã(p,q)(V2)] =

1
2
[Ap(ξ1), Ap(ξ2)](q)+

1
2
[Ap(ξ1)(q),Φ(p)q(ξ2)]

+
1
2
[Φ(p)q(ζ1), Ap(ζ2)(q)] +

1
2
[Φ(p)q(ζ1),Φ(p)q(ζ2)]

=
1
2
[A, A]p(ξ1, ξ2)(q)+

1
2
[Φ,Φ](p)q(ζ1, ζ2)+ [A,Φ](p,q)(V1, V2),

while the differential

dÃ(V1, V2) =
1
2


V1(Ã(V2))− V2(Ã(V1))− Ã([V1, V2])


can be expressed as a sum of four terms,

dÃ = dPA + dQΦ + dPΦ + dQA.

Here we are considering A andΦ variously as forms on P and Q and as maps from these spaces. More specifically, we have

• dPA is the derivative of A considered as a one-form on P:

dPA(p,q)(V1, V2) =
1
2


(ξ1A)p(ξ2)− (ξ2A)p(ξ1)− Ap([ξ1, ξ2])


(q)

• dQΦ is the derivative of the Higgs field considered as a one-form on Q , i.e. an element of A:

dQΦ(p,q)(V1, V2) =
1
2


ζ1(Φ(p))q(ζ2)− ζ2(Φ(p))q(ζ1)− Φ(p)q([ζ1, ζ2])


• dPΦ is the derivative of the Higgs field considered as a map P → A:

dPΦ(p,q)(V1, V2) =
1
2


(ξ1Φ)(p)q(ζ2)− (ξ2Φ)(p)(ζ1)


• dQA is the derivative of A considered as an element of Lie(G), i.e. a G-equivariant map Q → g:

dQA(p,q)(V1, V2) =
1
2


ζ1(Ap(ξ2))− ζ2(Ap(ξ1))


(q).

Putting this all together, we have

F̃ = FA + FΦ + ∇Φ,

where FA is the curvature of A, FΦ is the curvature ofΦ considered as a connection on Q and ∇Φ = dPΦ + [A,Φ] + dQA.

Remark 5.1. Comparing this with the caloron correspondence for loop groups [3], the Higgs field there is a flat connection
on the trivial bundle over the circle and hence FΦ = 0.
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5.3. Caloron classes

We can now proceed to define characteristic classes for the G-bundle P → M using the caloron correspondence. Let f
be an invariant polynomial in Ik(g). The Chern–Weil homomorphism for the caloron transformP → M × X determines a
2k-form representing a class cwf (A) ∈ H2k(M ×X). Integrating this form over the d-dimensional manifold X yields a closed
(2k − d)-form onM , which we call the caloron class of P . In short, we have

Ik(g)
cwf (A)
−−−→ H2k(M × X)


X

−→ H2k−d(M),

and we denote by ς2k−d(P) the resulting caloron class in H2k−d(M).
Note that in order to define a degree r characteristic class for P , we must pick k = (d+ r)/2, which in particular requires

r and d to have the same parity.1 An explicit formula for the caloron classes of P is obtained by calculating

X cw(A). Given a

connection A and Higgs fieldΦ for P , we know from Section 5.2 that the curvature F̃ of the caloron connection Ã onP splits
into a sum of three terms,

F̃ = FA + FΦ + ∇Φ.

Inserted as arguments into an invariant polynomial f ∈ Ik(g), we have

cwf (A) = f (F̃ k) = f

(FA + FΦ + ∇Φ)k


.

Note that the base is a product and the forms FA, FΦ and ∇AΦ are of type (2, 0), (0, 2) and (1, 1) respectively. Integrating
over X picks out only the terms of the type (2k − d, d). Hence, we have

ς2k−d(P) =

∫
X
f

(FA + FΦ + ∇Φ)k


[2k−d,d]

which for the lowest values of the pair (d, k) yields Table 1.
In particular, for X = S1, we recover the string classes introduced in [2,3],

ς2k−1(P) = k
∫
S1

f

F k−1
A ∇Φ


.

More generally for a manifold X of dimension d, the lowest degree caloron classes are given by

ς0(P) =

∫
X
f

F d/2
Φ


,

ς1(P) =
d + 1
2

∫
X
f

∇ΦF

d−1
2

Φ


,

ς2(P) =
d + 2
2

∫
X
f

FAF
d/2
Φ +

1
2

d−2
2−

j=0

∇ΦF
d−2
2 −j

Φ ∇ΦF j
Φ

 ,

ς3(P) =
d + 3
2

∫
X
f

 d−1
2−

j=0

FAF
d−1
2 −j

Φ ∇ΦF j
Φ +

1
3

d−3
2−

j=0

j−
l=0

∇ΦF
d−3
2 −j

Φ ∇ΦF j−l
Φ ∇ΦF l

Φ

 ,

ς4(P) =
d + 4
2

∫
X
f

1
2

d
2−

j=0

FAF
d
2 −j
Φ FAF

j
Φ +

d−2
2−

j=0

j−
l=0

FAF
d−2
2 −j

Φ ∇ΦF j−l
Φ ∇ΦF l

Φ

+
1
4

d−4
2−

j=0

j−
l=0

l−
m=0

∇ΦF
d−4
2 −j

Φ ∇ΦF j−l
Φ ∇ΦF l−m

Φ ∇ΦFm
Φ


.

The formulae get increasinglymore complicated, involvingmore nested sums, as one goes to higher degrees in cohomology.
However, in the special case when G is abelian a straightforward calculation leads to the following general formula:

ς2k−d(P) =

min{d,k}−
i= d

2


k
i

 
i

d − i

 ∫
X
f

F k−i
A F d−i

Φ (∇AΦ)
2i−d


.

1 In the loop group case X was the circle, so dim(X) = 1. Hence the string classes are all of odd degree.
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6. Universal caloron classes

In this final section we restrict our attention to the framed and product case of the constructions in Section 2. There is a
natural model for the universal G0-bundle which allows for explicit expressions for the caloron classes.

The group of based gauge transformations G0 acts freely on the space of connections A and the quotient is a smooth
tame Fréchet manifold [12], which can be identified with the classifying space BG0. We want to calculate the caloron classes
explicitly for the universal bundle A → A/G0. We do this by choosing a connection and Higgs field; the connection is the

one described in [13] whose horizontal subspaces are given by ker d∗
ω and the Higgs field is simplyΦ : A

id
−→ A. The operator

d∗
ω is the adjoint of the covariant exterior differential dω with respect to the inner product

(α, β) =

∫
X
α ∧ ∗β

for α, β ∈ Ωp(X, adQ ). Because A is an affine space, the tangent space to A at ω isΩ1(X, adQ ). The map into the vertical
tangent space is

dω : Γ0(X, adQ ) → TωA = Ω1(X, adQ )

and we have a splitting TωA = im dω ⊕ ker d∗
ω into orthogonal subspaces. Since the gauge transformations are based, the

Laplacian

d∗

ωdω : Γ0(X, adQ ) → Γ0(X, adQ )

is invertible and we denote by Gω = (d∗
ωdω)

−1 the corresponding Green’s operator. The connection form can now be
expressed as Gωd∗

ω and by Theorem 4.12 the caloron connection on Ã = (A × Q )/G0 over A/G0 × X is given by

Ã(ω,q)(ξ , ζ ) = Gωd∗

ω(q)(ξ)+ ωq(ζ )

for a tangent vector (ξ , ζ ) ∈ T[ω,q] A, where Gωd∗
ω(ξ) is interpreted as a G-equivariant map Q → g. Note that this caloron

connection is framed. Recall that the curvature of Ã consists of three terms,

F̃ = FA + FΦ + ∇Φ.

Since the Higgs field maps a connection ω ∈ A onto itself, clearly FΦ evaluated on a pair of tangent vectors V1 = (ξ1, ζ1)
and V2 = (ξ2, ζ2) at (ω, q) ∈ Ã is given by the curvature Fω(q)(ζ1, ζ2) of ω.

Next let us consider the term ∇Φ . Recall that as with any curvature we only need to evaluate it on horizontal vectors.
Indeed if V1 and V2 are horizontal, then F̃(V1, V2) = dÃ(V1, V2) so the commutator term does not contribute. Let therefore
ζ1, ζ2 ∈ TqQ be horizontal forω and ξ1, ξ2 ∈ Ω1(X, adQ ) be horizontal (i.e. d∗

ωξ = 0). AsA is an affine space we can extend
ξ1 and ξ2 to constant vector fields whose Lie bracket must vanish. We also extend ζ1 and ζ2 to vector fields. From Section 5.2
we have

∇Φ(ω,q)(V1, V2) = dPΦ(ω,q)(V1, V2)+ dQ

Gωd∗

ω


(q)(V1, V2),

where

dPΦ(ω,q)(V1, V2) = −
1
2
ωq([ζ1, ζ2])

sinceΦ is the identity map, and

dQ

Gωd∗

ω


(q)(V1, V2) =

1
2
ζ1


q → Gωd∗

ω(q)(ξ2)

− ζ2


q → Gωd∗

ω(q)(ξ1)


=
1
2


t0


t → ωq(ξ2)+ tξ1(ζ2)(q)


− t0


t → ωq(ξ1)+ tξ2(ζ1)(q)


=

1
2


ξ1(ζ2)(q)− ξ2(ζ1)(q)


,

where we have abused the notation here by treating ω both as a constant and a variable. Hence the (1, 1) component of the
curvature applied to horizontal vector fields V1 and V2 is

∇Φ(ω,q)(V1, V2) =
1
2


ξ1(ζ2)(q)− ξ2(ζ1)(q)− ωq([ζ1, ζ2])


.

Finally we calculate

FA(ω,q)(V1, V2) =
1
2


ξ1(ω → Gωd∗

ω)(q)(ξ2)− ξ2(ω → Gωd∗

ω)(q)(ξ1)

.



P. Hekmati et al. / Journal of Geometry and Physics 62 (2012) 224–241 241

Table 1
Caloron classes for small values of d and k.

d k = 1 k = 2 k = 3

1

X f (∇Φ)


X f


2FA∇Φ

 
X f


3F 2

A∇Φ


2


X f (FΦ )


X f


∇Φ2

+2FAFΦ
 

X f

3FA∇Φ2

+ 3F 2
A FΦ


3 –


X f


2∇ΦFΦ

 
X f


∇Φ3

+ 3FA∇ΦFΦ + 3FAFΦ∇Φ


4 –


X f


F 2
Φ

 
X f


3∇Φ2FΦ + 3FAF 2

Φ


5 – –


X f


3∇ΦF 2

Φ


6 – –


X f


F 3
Φ



Consider the first term which is

t0

t → Gω+tξ1d

∗

ω+tξ1(ξ2)


= t0

t → Gω+tξ1


d∗

ω(ξ2)+ Gωt0

t → d∗

ω+tξ1(ξ2)


= t0

t → Gω+tξ1


0 + Gωt0


t → d∗

ω(ξ2)+ t ad∗

ξ1
(ξ2)


= Gω ad∗

ξ1
(ξ2).

Taking the adjoint is linear and therefore commuteswith differentiation. Finallywe note that ad∗

ξ1
(ξ2) = − ad∗

ξ2
(ξ1) because∫

X
⟨ad∗

ξ1
(ξ2), ξ3⟩ volX =

∫
X
⟨ξ2, adξ1(ξ3)⟩ volX = −

∫
X
⟨ad∗

ξ2
(ξ1), ξ3⟩ volX

and the inner product on g is invariant. Hence we conclude that the curvature FA applied to V1 and V2 is Gω ad∗

ξ1
(ξ2). Putting

this all together we have

F̃(ω,q)(V1, V2) = Gω ad∗

ξ1
(ξ2)+ Fω(q)(ζ1, ζ2)+

1
2


ξ1(ζ2)(q)− ξ2(ζ1)(q)− ωq([ζ1, ζ2])


.

Using this F̃ in the formulae in Table 1 for d = 4 and k = 3 we reproduce the results of [13] and for d = k = 3 the results
of [14].
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