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Odd K-theory has the interesting property that it admits an infinite number of 
inequivalent differential refinements. In this paper we provide a bundle theoretic 
model for odd differential K-theory using the caloron correspondence and prove that 
this refinement is unique up to a unique natural isomorphism. We characterise the 
odd Chern character and its transgression form in terms of a connection and Higgs 
field and discuss some applications. Our model can be seen as the odd counterpart 
to the Simons–Sullivan construction of even differential K-theory. We use this model 
to prove a conjecture of Tradler–Wilson–Zeinalian [16], which states that the model 
developed there also defines the unique differential extension of odd K-theory.

© 2015 Elsevier B.V. All rights reserved.

0. Introduction

Since their inception in the guise of the differential characters of Cheeger–Simons [5], differential cohomol-
ogy theories have become an increasingly important tool in mathematics and mathematical physics. Put 
simply, differential cohomology theories are refinements of generalised (Eilenberg–Steenrod) cohomology 
theories that naturally include extra differential form data. Using abstract formalism, Hopkins and Singer 
constructed in [9] a differential cohomology theory associated to any given generalised cohomology theory. 
Bunke and Schick developed in [4] an axiomatic characterisation for differential extensions and later proved 
[2] that, under certain conditions, such extensions are unique up to unique isomorphism.

Recently there has been a vigorous discussion on the properties and applications of differential extensions, 
centring particularly on differential extensions of topological K-theory. There is already a variety of different 
models for differential K-theory appearing in the literature [2,7,9]. As is the case with ordinary K-theory, the 
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group structure of differential K-theory splits into odd and even degree parts. The Bunke–Schick uniqueness 
results are enough to guarantee that any two differential extensions of even K-theory are isomorphic, however 
this is not the case for odd K-theory where extra data is required to obtain uniqueness.

A primary consideration when constructing differential extensions is to obtain an intuitive geometric 
model that allows for straightforward calculations. A particularly intuitive model for even differential 
K-theory is provided by Simons and Sullivan [15]. The Simons–Sullivan model uses structured vector bun-
dles—smooth vector bundles equipped with an equivalence class of connections defined by Chern–Simons 
exactness—to incorporate differential form data into ordinary even K-theory. This model has an obvious 
geometric appeal and its presentation avoids the additional differential forms appearing in other models, 
such as [7].

In this paper, we introduce a natural odd-degree counterpart to the Simons–Sullivan model and show 
that it defines odd differential K-theory. This bundle-theoretic construction is achieved using structured Ω
vector bundles. Structured Ω vector bundles, or more simply “Ω bundles” are best viewed as the result of 
applying a sort of smooth suspension to the structured vector bundles of Simons–Sullivan. The advantage of 
thinking in terms of Ω bundles is that it allows one to understand the odd differential K-theory of a manifold 
M through differential-geometric structures living on M as opposed to the suspension ΣM . Ultimately the 
choice to use Ω bundles is mostly aesthetic and everything could be done using regular bundles over ΣM , 
however we find that the use of Ω bundles simplifies certain arguments and emphasises the link to the 
Simons–Sullivan model.

In concrete terms, Ω bundles are Fréchet vector bundles with the additional property that each fibre 
is a free finitely generated LC-module, with LC the ring of smooth loops in C. Equivalently, Ω bundles 
may be viewed as the vector bundle objects naturally associated to principal ΩGL(n)-bundles via the 
associated bundle construction. Here ΩGL(n) is the Fréchet Lie group of smooth loops in GL(n) based at 
the identity.

A central tool in this work is the caloron correspondence of [12,17], whereby an ΩGL(n)-bundle Q → M

determines a framed GL(n)-bundle1 Q → M × S1 and, conversely, a framed GL(n)-bundle P → M × S1

determines an ΩGL(n)-bundle P → M . The assignments Q �→ Q and P �→ P are functorial and are 
called the caloron transform and inverse caloron transform respectively. These functors give an equivalence 
of categories and a key property of this equivalence is that it persists at the level of connective data. 
Briefly, recall that a Higgs field for the ΩGL(n)-bundle Q → M is a map Φ: Q → Lgl(n) satisfying the 
condition

Φ(qγ) = ad(γ−1)Φ(q) + γ−1∂γ (i.1)

for q ∈ Q and γ ∈ ΩGL(n), where ∂ is differentiation in the circle direction. Denoting by Θ the (left-
invariant) Maurer–Cartan form on GL(n), a Higgs field Φ and an ΩGL(n)-connection A on ΩGL(n)-bundle 
together determine the form

A(q,θ,g) = ad(g−1)
(
Aq(θ) + Φ(q)(θ)dθ

)
+ Θg (i.2)

on Q × S1 × GL(n). This form descends to the quotient Q = (Q × S1 × GL(n))/ΩGL(n) and deter-
mines a framed GL(n)-connection. Conversely, a framed GL(n)-connection determines a Higgs field and 
ΩGL(n)-connection on the inverse caloron transform bundle. The reader is encouraged to think of the 
caloron correspondence as a smooth version of the suspension construction in topology that moreover 
includes the connective structure.

An outline of this paper is as follows. In Section 1 we develop the theory of Ω bundles and their caloron 
transforms following [14]. As part of this discussion, we introduce the appropriate notion of connective 

1 Recall (cf. [12, Definition 3.1]) that a G-bundle Q → M×S1 is framed if it is equipped with a choice of section s ∈ Γ(M×{0}, P ).
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data on Ω bundles. We show that stable isomorphism classes of Ω bundles over M under the direct sum 
operation give a smooth model for the odd K-theory of any smooth compact manifold M and compute the 
odd Chern character. This gives a very natural and straightforward bundle-theoretic interpretation of the 
identity K−1(M) ∼= [M, BΩGL] ∼= [M, GL].

Following this, in Section 2 we introduce the string potential form, which plays the role of the Chern–
Simons form for Ω bundles (see also [10] for a related construction). Using this string potential and following 
the techniques of Simons–Sullivan, in Section 3 we construct a differential extension of odd K-theory, which 
we call the Ω model. Analogously to the Simons–Sullivan construction, the Ω model is built out of stable 
isomorphism classes of structured Ω bundles, which are equipped with an equivalence class of connective 
data defined by exactness of the string potential form.

Whilst bearing a close similarity to that of the Simons–Sullivan model, the construction of the Ω model 
is not simply a straightforward generalisation. In particular, Theorem 3.11 on the existence of inverses to 
structured Ω bundles requires substantially more work than in the finite rank case. Another difficulty peculiar 
to this setting is that while differential K-theory can be characterised uniquely up to unique isomorphism, 
differential extensions of odd K-theory are not unique; this is not the case for differential extensions of 
even K-theory. In the proof of Theorem 3.19 we use the caloron correspondence to construct a canonical 
isomorphism to (some fixed model of) odd differential K-theory that factors through the Simons–Sullivan 
model. In this fashion, we establish that the Ω model is indeed a model for odd differential K-theory.

Finally, in Section 4 we use the Ω model to complete the work of Tradler–Wilson–Zeinalian by proving 
their conjecture of [16]. In [16] the authors construct a differential extension of odd K-theory via certain 
equivalence classes of smooth classifying maps into GL and state that this construction should be odd 
differential K theory. After recalling the TWZ construction, we provide an explicit isomorphism to the Ω
model, verifying that it does indeed define odd differential K-theory. The proof ought to be viewed as a 
refined version of the homotopy equivalence GL ∼= ΩBGL.

Terminology and conventions. Throughout this paper, we let M be a compact finite-dimensional manifold, 
possibly with corners. All vector bundles are taken to be complex and we denote by Cn the trivial vector 
bundle M × C

n → M . Unless stated otherwise, everything is assumed to be taking place in the smooth 
category; using smooth manifolds, smooth vector bundles, etc. The circle group S1 is regarded as the quotient 
R/2πZ and is equipped with basepoint 0. Integration over the fibre for fibrations of the form M ×S1 → M

is always taken with respect to the canonical orientation on S1 inherited from R.

1. Ω vector bundles

In order to develop the notions underlying our geometric model for odd differential K-theory, we first give 
a simple characterisation of odd K-theory K−1(M) in terms of “Ω vector bundles” (or simply “Ω bundles”) 
that is completely analogous to the description of even K-theory K0(M) as the group of smooth virtual 
vector bundles over M . Since the underlying objects are smooth bundles, as we shall see this characterisation 
allows us to define odd differential K-theory by introducing the appropriate notion of connective data on 
Ω bundles. What follows is a brief account of the theory developed in [14, Chapter 3] and the interested 
reader is referred there for more detail.

To motivate our construction recall that topologically we have

K−1(M) := K̃0(ΣM+) = K̃0 ((M × S1)/M0
)
.

Here M+ := M�{∗} is a pointed space with the adjoined basepoint {∗}, ΣM+ is its reduced suspension and 
M0 = M × {0}. The tilde denotes reduced K-theory, namely the kernel of the pullback-to-basepoint map 
or equivalently the restriction to virtual bundles of virtual rank zero. The second equality follows from the 
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obvious homeomorphism ΣM+ � (M × S1)/M0. Of course the quotient (M × S1)/M0 is rarely a manifold, 
so we deal with the question of smoothness by regarding bundles on (M × S1)/M0 as bundles on M × S1

that are trivial on M0. More precisely, we have

Definition 1.1. A (smooth) framed vector bundle of rank n over M × S1 is a pair consisting of a vector 
bundle E → M × S1 of rank n and an isomorphism E|M0 � M0 × C

n where M0 = M × {0}. A choice of 
isomorphism E|M0 � M0 × C

n is a framing of E over M0.

We are interested in obtaining a characterisation of K−1(M) in terms of smooth bundles on M , not on 
M × S1. We can pass from one to the other by analogy with the push down or direct image operation of 
algebraic geometry. If E → M × S1 is a vector bundle of rank n and m ∈ M we define

Em := Γ({m} × S1, E) (1.1)

and let E be the disjoint union of all the Em with the obvious projection map to M . Notice that if U ⊆ M

is open and s ∈ Γ(U × S1, E), then š defined by š(m)(θ) = s(m, θ) is a section of E over U . Smoothness of 
E is determined by requiring that these be exactly all the smooth sections of E over U .

To be able to characterise precisely which kinds of bundles arise in this way we need to explore the 
structure of the fibres. They all have the form Γ(S1, F ) for some complex vector bundle F → S1 which we 
could, of course, take to be trivial. We note that they are all acted on by the ring LC := C∞(S1, C) and 
our first observation is essentially the Serre–Swan theorem

Proposition 1.2. An LC-module N is isomorphic to the space of sections Γ(S1, F ) of some vector bundle 
F → S1 if and only if N is finitely generated and free.

The following gives a characterisation of the automorphisms of the fibres of bundles constructed via (1.1).

Proposition 1.3. A C-linear automorphism f : LCn → LCn is an LC-module automorphism if and only if it 
arises as pointwise multiplication by an element of LGL(n) := C∞(S1, GL(n)).

Proof. Consider the LC-module LCn. Evaluation at θ ∈ S1 gives the surjection evθ: LCn → C
n with kernel 

the ideal IθLCn of n-tuples of functions S1 → C vanishing at θ. It follows that we have the induced 
isomorphism evθ: LCn/IθLC

n � C
n and if f : LCn → LCn is an LC-module isomorphism then it clearly 

preserves IθLCn and induces a linear map f(θ): Cn → C
n. By definition, for any v ∈ LCn we then have 

(fv)(θ) = f(θ)v(θ), so f is completely determined by the f(θ). It follows that there is a map f−1 with 
f−1(θ)f(θ) = 1, i.e. f(θ) is invertible. Finally if we apply f to the constant map θ �→ ei, the i-th standard 
basis vector of Cn, we obtain the i-th column of f(θ), which is an element of LCn and hence smooth. So 
the assignment θ �→ f(θ) ∈ GL(n) is smooth. The converse is straightforward. �

So far we have characterised the bundles E as Fréchet vector bundles over M whose fibres are free 
finitely generated LC-modules. Alternatively, they may be viewed as Fréchet vector bundles whose fibres 
are isomorphic to LCn and whose frame bundle has a reduction to LGL(n). In the case that E is constructed 
from a framed vector bundle E → M × S1, the canonical trivialisation of the fibre of E over (m, 0) yields 
an extra constraint on E. To determine this condition, let N be a free finitely generated module over LC
so that there is an LC-module isomorphism N ∼= LCk, with k the rank of N . Let IθN be the kernel of the 
composition of such an isomorphism with evθ. Motivated by the proof of Proposition 1.3, for n ∈ N we 
say that n vanishes at θ ∈ S1 if n ∈ IθN and similarly that two elements n1 and n2 agree at θ if n1 − n2
vanishes at θ. If g ∈ Aut(N) then we say that g is the identity at θ if for every n ∈ N we have that g(n)
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and n agree at θ. If N = LCn as in Proposition 1.3 then such a g corresponds to an element of LGL(n)
that is the identity at θ. This implies the

Lemma 1.4. There is a canonical identification of the subgroup of based loops ΩGL(n) ⊂ LGL(n) with the 
subgroup Aut0(LCn) of LC-module automorphisms of LCn which are the identity at 0.

If N is a free finitely generated module of rank n and θ ∈ S1 we define

Nθ := N

IθN

which is a vector space of dimension n. We say that N is framed at 0 if we have chosen an isomorphism 
between N0 and Cn. In the case of LCn we take the canonical such framing. We define Iso0(LCn, N) to be 
all LC-module isomorphisms that preserve the framing at 0, then we have

Proposition 1.5. Let N be a free finitely generated projective LC-module of rank n framed at 0. Then 
Iso0(LCn, N) is a right Aut0(LCn)- (or ΩGL(n))-torsor.

Recall that a set X being a right G-torsor means that G has a free and transitive right action on X.
For convenience let us call a free finitely generated LC-module of rank n an Ω-module of rank n. We are 

interested in bundles of Ω-modules. If E → M is a fibration whose fibres are Ω-modules we say it is locally 
Ω-trivial if we can cover M with open sets U ⊂ M and choose isomorphisms U × LCn → E|U which are 
fibrewise Ω-module isomorphisms. We also call the latter Ω frames.

Definition 1.6. An Ω vector bundle over M is a locally Ω-trivial fibration E → M whose fibres are Ω-modules.

The rank of an Ω bundle E, denoted rank E, is the locally constant function defined as the rank of any 
fibre Em as an LC-module. A morphism of Ω bundles is a smooth map E → F of Fréchet vector bundles 
that restricts to a map of Ω-modules on each fibre.

Notice that if E is constructed from some framed vector bundle E → M × S1 as in (1.1) then local 
Ω-triviality can be seen by trivialising E over U × S1.

Example 1.7. The trivial Ω bundle of rank n over M is simply

LCn := M × LCn −→ M.

Example 1.8. For any positive integer n, recall (cf. [17, Section 3.1.2]) that the path fibration π: PGL(n) →
GL(n) is a model for the universal ΩGL(n)-bundle. The total space PGL(n) is the Fréchet manifold of paths 
p: R → GL(n) such that p(0) = id with the additional property that p−1∂p is 2π-periodic. The projection 
map is simply evaluation at 2π.

Via the standard representation of ΩGL(n) on LCn, we may view PGL(n) as the bundle of Ω frames for 
the associated bundle

E(n) := PGL(n) ×ΩGL(n) LC
n −→ GL(n).

Note that this implies E(n) is a classifying bundle for Ω vector bundles of rank n.

Following [12], we call E → M as constructed in (1.1) the inverse caloron transform of the framed bundle 
E → M × S1. The reason for this is the following proposition which we leave to the interested reader.
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Proposition 1.9. Let F(E) → M × S1 be the GL(n) frame bundle of the framed bundle E → M × S1. 
Then the vector bundle associated to the inverse caloron transform of F(E) by the natural representation 
of ΩGL(n) on LCn is naturally isomorphic to E.

Given any Ω bundle E → M we can define, as above, for any m ∈ M and θ ∈ S1 an n-dimensional 
complex vector space

E(m,θ) := Em/IθEm.

We claim that

E :=
⋃

(m,θ)∈M×S1

E(m,θ) → M × S1

is naturally a rank n vector bundle. The simplest way to see this is to notice that a local fibrewise LC-module 
isomorphism ξ: U×LCn → E|U induces a vector bundle isomorphism ξ̌: Cn → ∪(m,θ)∈U×S1E(m,θ). Moreover 
if η is another LC-module isomorphism with ξ = ηg for some g ∈ ΩGL(n), then ξ̌ = η̌g(θ). It follows that if 
we choose local trivialisations of E relative to an open cover {Uα}α∈I that are pointwise Ω frames, then they 
induce local trivialisations of E. Moreover if gαβ: Uα ∩Uβ → Aut0(LCn) = ΩGL(n) are local trivialisations 
of E then ǧαβ: (Uα×S1) ∩ (Uβ ×S1) → GL(n) are local trivialisations of E. This discussion also shows that 
above the point θ = 0 we can use the fact that g(0) = 1 to show that E is framed over M0.

Given an Ω bundle E → M we call the framed vector bundle E → M × S1 constructed in this way the 
caloron transform of E. Observe that the rank of E is exactly the rank of its caloron transform E. We leave 
it again to the interested reader to prove the following proposition.

Proposition 1.10. Let F(E) → M be the ΩGL(n) frame bundle of the Ω bundle E → M . The Cn-vector 
bundle associated to the caloron transform of F(E) is naturally isomorphic to E.

We know from [12, Proposition 3.2] that the caloron and inverse caloron transforms for principal bundles 
give an equivalence of categories and thus the same will be true for associated vector bundles. Alternatively 
this may be seen directly using the following. In the case of the module LCn we can think of the evaluation 
map as the projection

evθ:LCn → LCn/IθLC
n � C

n.

Similarly, for any m ∈ M , we can define the evaluation at θ map

evθ: Em → Em/IθEm = E(m,θ)

which induces an isomorphism

ev: Em → Γ({m} × S1, E)

and hence an isomorphism

ev: Γ(M,E) ∼=−−−→ Γ(M × S1, E) (1.2)

of modules over C∞(M × S1, C)2 that preserves the framing at 0 ∈ S1. In particular we have the following

2 The action of f ∈ C∞(M × S1, C) on s ∈ Γ(M, E) is given by (f · s)(m) := f̌(m)s(m) where f̌(m): θ �→ f(m, θ) is a loop in C.
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Proposition 1.11. If E → M is an Ω bundle, then it is naturally isomorphic to the inverse caloron transform 
of its caloron transform E → M × S1.

Conversely given a framed vector bundle E → M × S1 and writing E → M for its inverse caloron 
transform, there is an obvious isomorphism

ev: Γ(M × S1, E) ∼=−−−→ Γ(M,E) (1.3)

of C∞(M × S1, C)-modules that preserves the framing at 0 ∈ S1.

Proposition 1.12. If E → M × S1 is a framed vector bundle, then it is naturally isomorphic to the caloron 
transform of its inverse caloron transform E → M .

Notice that the caloron transform and the inverse caloron transform only invert each other up to natural 
isomorphism—they are pseudo-inverses—and are best viewed as giving an equivalence of categories. This 
is the point of view of [14, Section 3.1.1].

1.1. Higgs fields

By definition, the fibres of any Ω bundle of rank n are LC-modules arising as the space of sections 
Γ(S1, F ) for some Cn-bundle F → S1. As such we can consider connections on F ; usually they give rise 
to a covariant derivative ∇: Γ(S1, F ) → Γ(S1, T ∗S1 ⊗ F ) but using the canonical trivialisation of T ∗S1 we 
may regard the connection as a map ∇: Γ(S1, F ) → Γ(S1, F ). Thus a connection on F is equivalent to an 
LC-derivation δ: Γ(S1, F ) → Γ(S1, F ).

We define an LC-derivation of the LC-module N as a linear map δ: N → N satisfying δ(sn) = (∂θs)n +
sδ(n) for all s ∈ LC and n ∈ N , with ∂θ partial differentiation with respect to θ.

Example 1.13. Every derivation on LCn is of the form ∂θ + a for a ∈ Lgl(n).

If N is an LC-module, denote the collection of all such derivations by Der(N) and note that an affine 
combination of derivations is again a derivation. If E → M is an Ω bundle we can apply Der fibrewise to 
obtain a bundle Der(E) → M . Then we have

Definition 1.14. A Higgs field φ for an Ω vector bundle E → M is a smooth section of Der(E) → M .

Example 1.15. The trivial Higgs field on LCn is simply the fibrewise LC-module derivation ∂: v �→ ∂θv that 
differentiates along the circle.

The existence of Higgs fields is guaranteed by a standard partition of unity argument. Alternatively, we 
may proceed as follows. A connection on a framed vector bundle E → M ×S1 is framed if it restricts to the 
trivial connection on E|M0 . Let E be the inverse caloron transform of the framed vector bundle E → M×S1

so that Em is the space of sections of E over {m} × S1.

Proposition 1.16. The restriction of a framed connection on the framed bundle E → M × S1 to the circle 
direction defines a Higgs field on its inverse caloron transform E. Moreover, since any Ω bundle is isomorphic 
to the inverse caloron transform of some framed bundle over M × S1, Higgs fields exist.

Explicitly, let ∂θ denote the canonical vector field on E in the circle direction. Let ∇ be a framed 
connection on the framed bundle E. If E is the caloron transform of E, then for any v ∈ Em we choose a 
section s ∈ Γ(E) extending v. The Higgs field determined by ∇ is then
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φ(v) = ev
(
∇∂θ

(
ev(s)

))
(m) (1.4)

where ev, ev are from (1.2) and (1.3) and we have omitted reference to the natural isomorphisms coming 
from the caloron correspondence. In point of fact, we do not require the connection ∇ to be framed in the 
above result—this condition is required later in the discussion on module connections.

We remark that there is an obvious pullback operation on Higgs fields. Furthermore, by expressing the 
connection acting on a local basis in terms of its connection 1-forms in the standard fashion, we have

Lemma 1.17. Higgs fields on the Ω bundle E are in bijective correspondence with Higgs fields on its ΩGL(n)
frame bundle F(E).

Example 1.18. Recalling Example 1.8, we note that the map Φ: p �→ p−1∂p satisfies (i.1) so is a Higgs field 
on PGL(n). Applying the above Lemma gives a Higgs field φ(n) on the associated Ω bundle E(n) → GL(n).

An important notion is that of holonomy of a Higgs field. Recall from [12, Proposition 4.3] that if Φ is a 
Higgs field on the principal ΩG-bundle Q → M , then the holonomy of Φ is given by solving

Φ(q) = g−1∂g

for the path g = g(q) subject to the initial condition g(0) = 1. This gives a smooth ΩG-equivariant map 
holΦ: Q → PG that descends to a classifying map holΦ: M → G for the bundle Q.

In the case of the Ω bundle E → M equipped with Higgs field φ, we define the holonomy of φ as follows. 
Up to natural isomorphism, E may be considered as the inverse caloron transform of some framed bundle 
E → M × S1, so that Em = Γ({m} × S1, E), and we set n = rank E. Moreover, by Proposition 1.23 below, 
under this isomorphism the Higgs field is given fibrewise by the expression (1.4) for some framed connection 
∇ on E. The holonomy of φ is then the map

holφ:M −→ GL(n)

that sends m to the holonomy of ∇ around the loop θ �→ (m, θ) starting at (m, 0). It is not too hard to see 
that if Φ is the corresponding Higgs field on the ΩGL(n) frame bundle F(E), then holφ = holΦ. It follows 
from this that the pullback of E(n) by holφ is isomorphic to E so that holφ is a classifying map for E.

1.2. Module connections

In addition to Higgs fields, there is another important notion of connective data on Ω bundles. First 
consider an ordinary connection �: Γ(M, E) → Ω1(M, E), thought of as a vector bundle covariant derivative. 
The fibre T ∗

mM ⊗ Em may be viewed as an LC-module in an obvious way, so it is natural to ask if the 
connection is a derivation for the LC-module structure; if it is then it must also preserve sections that 
vanish at 0 ∈ S1. That is, such a connection preserves sections of the form s: m �→ s(m) ∈ I0Em so it 
induces an action on sections of the bundle E0 whose fibre over m is Em/I0Em.

Definition 1.19. A connection �: Γ(M, E) → Ω1(M, E) is a module connection if it is a derivation for the 
LC-module structure on the fibres and if it induces the trivial connection Γ(M, E0) → Ω1(M, E0).

Example 1.20. The trivial module connection on LCn is simply the ordinary trivial connection d: v �→ dv

considered as an LC-module derivation.
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Module connections always exist on Ω bundles. This may be seen directly by recalling that every Ω bundle 
E → M is naturally isomorphic to the inverse caloron transform of some framed bundle E → M×S1. Picking 
a framed connection ∇ on E, by using the canonical trivialisation of T ∗S1 the expression

� := ev ◦ ∇ ◦ ev

may be viewed as a map Γ(M, E) → Ω1(M, E), once again omitting the natural isomorphism arising from 
the caloron correspondence. Since ∇ is a connection, it follows that � is a derivation for the LC-module 
structure on the fibres of E. Moreover, the framing condition on ∇ implies that the induced connection 
Γ(M, E0) → Ω1(M, E0) is trivial so that � is a module connection—we call this the module connection 
determined by ∇ via the inverse caloron transform.

It is not difficult to check that the pullback of a module connection is once again a module connection.

Lemma 1.21. Module connections on the Ω bundle E are in bijective correspondence with ΩGL(n)-connections 
on its associated ΩGL(n) frame bundle F(E).

Example 1.22. There is a well-known class of connections on the path fibration PGL(n) → GL(n), given as 
follows (see also [12, Example 3.5]). Let Θ denote the (left-invariant) Maurer–Cartan form for the pointwise 
multiplication on PGL(n) and let Θ̂ denote the right-invariant Maurer–Cartan form on GL(n). Choose a 
smooth function α: R → R such that α(t) = 0 for t ≤ 0 and α(t) = 1 for t ≥ 1, then the expression

Aα = Θ − α ad(p−1)π∗Θ̂

defines an ΩGL(n)-connection at p ∈ PGL(n). By the above lemma, Aα determines a module connection 
�α(n) on the Ω bundle E(n) → GL(n). Of course, this module connection depends on the choice of smooth 
function α.

When we are given a framed vector bundle equipped with framed connection, we have already seen how 
to define a module connection and a Higgs field on its inverse caloron transform. Conversely, if E → M is a 
given Ω bundle equipped with module connection � and Higgs field φ, we obtain a framed connection on 
the caloron transform E → M × S1 as follows. First observe that, via a natural isomorphism arising from 
the caloron correspondence, we may identify the expressions

ev ◦ � ◦ ev and ev ◦ φ ◦ ev

respectively with the M and S1 components of a connection on E. Adding these together thus gives a 
connection on E, which can be shown to be framed—this is the framed connection determined by � and φ.

Proposition 1.23. The natural isomorphisms of Propositions 1.11 and 1.12 preserve the connective data.

Remark 1.24. As with the topological caloron correspondence above, the caloron correspondence for bun-
dles with connective data may be phrased as an equivalence of categories. This formulation, developed in 
[14, Section 3.2.1], shows that any map of Ω bundles E → F preserving the module connection and Higgs 
field gives rise to a map E → F of the caloron transforms that preserves the associated framed connections; 
the converse also holds.

1.3. Operations

There are two operations of interest on Ω bundles. The first is the Whitney sum of vector bundles. Notice 
that if F1, F2 are vector bundles over S1 then there is a natural isomorphism
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Γ(S1, F1) ⊕ Γ(S1, F2) ∼= Γ(S1, F1 ⊕ F2)

of LC-modules. It follows that the inverse caloron transform of E1 ⊕ E2 is E1 ⊕ E2 and vice versa.
Similarly applying the tensor product of LC-modules we have

Γ(S1, F1) ⊗LC Γ(S1, F2) ∼= Γ(S1, F1 ⊗ F2).

So for LC-modules N, N ′ we write N�N ′ := N⊗LCN
′ and we define the honed tensor product of Ω bundles 

E1 and E2, to distinguish it from the vector space tensor product, by

(E1 � E2)m := (E1)m ⊗LC (E2)m.

It follows that the inverse caloron transform of E1 ⊗E2 is E1 � E2 and vice versa.
Finally we note that if F → S1 is a vector bundle then

HomLC(Γ(S1, F ), LC) ∼= Γ(S1, F ∗)

and we define for any LC-module N the dual module N∗ := HomLC(N, LC). Similarly for any Ω bundle 
E → M we define the Ω bundle E∗ → M fibrewise. If E is the inverse caloron transform of the framed 
bundle E, then E∗ is the inverse caloron transform of the dual E∗ equipped with the dual framing, and 
vice versa. Likewise if N is an LC-module we define N to be the conjugate module where the LC-action is 
anti-linear, i.e. sn = sn for s ∈ LC and n ∈ N . Again we can show that the inverse caloron transform of E
is E and vice-versa.

1.4. Hermitian structures

For the discussion in Section 4 we also need to consider Ω bundles with structure group ΩU(n). Let 
F → S1 be a Hermitian vector bundle, with Hermitian structure 〈 , 〉. For f, g ∈ Γ(S1, F ) we then have 
(z �→ 〈f(z), g(z)〉) ∈ LC. Motivated by this we have the following

Definition 1.25. Let N be a free finitely generated LC-module. A Hermitian structure on N is an LC-module 
map

〈〈 , 〉〉:N � N → LC,

such that

(1) 〈 〈v, v〉 〉(θ) > 0 whenever v /∈ IθN ,
(2) 〈 〈v, w〉 〉(θ) = 〈〈w, v〉〉(θ) for all v ∈ N , w ∈ N and θ ∈ S1.

Notice that if v ∈ IθN it has the form v = sw for some s ∈ LC vanishing at θ, so that since 〈 〈v, x〉 〉(θ) =
s(θ)〈 〈w, x〉 〉(θ) = 0 for any x ∈ N there is an induced Hermitian inner product on the finite dimensional 
vector space Nθ = N/IθN . If N is a free finitely generated module framed at zero, then the Hermitian 
structure is framed at zero if (v, w) �→ 〈 〈v, w〉 〉(0) induces the standard inner product on Cn.

Definition 1.26. A Hermitian Ω bundle is an Ω vector bundle with a smooth fibrewise choice of a Hermitian 
structure which is framed at zero.

Now it is not difficult to prove the following results.
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Proposition 1.27. If E is a Hermitian Ω vector bundle its frame bundle F(E) has a natural reduction to 
ΩU(n).

Proposition 1.28. If E is a Hermitian Ω vector bundle its caloron transform E is a framed Hermitian vector 
bundle and conversely, if E is a framed Hermitian vector bundle its inverse caloron transform is a Hermitian 
Ω vector bundle.

In the above proposition, a framed Hermitian vector bundle E → M × S1 is a framed bundle equipped 
with a Hermitian structure such that the sections over M0 determined by the framing are orthonormal.

Given a Hermitian Ω bundle E → M we can also require that module connections and Higgs fields on 
E be compatible with the Hermitian structure. A module connection � is compatible with (the Hermitian 
structure) 〈 〈 , 〉 〉 if

d〈〈v, w〉〉 = 〈〈�(v), w〉〉 + 〈〈v,�(w)〉〉

for all v, w ∈ Γ(M, E). Similarly a Higgs field φ is compatible with 〈 〈 , 〉 〉 if

∂θ〈〈v, w〉〉 = 〈〈φ(v), w〉〉 + 〈〈v, φ(w)〉〉

for all v, w ∈ Γ(M, E). Compatible module connections and Higgs fields on E are in bijective correspondence 
with ΩU(n)-connections and Higgs fields on the ΩU(n) frame bundle of E.

1.5. Odd K-theory

We conclude this section by elucidating the role of Ω bundles in K-theory. If X is a topological space let 
Vect(X) denote the semigroup of isomorphism classes of complex vector bundles over X under direct sum. 
Recall that K−1(M) is defined by the Grothendieck group completion of Vect

(
(M × S1)/M0

)
, followed by 

restriction to elements of virtual rank zero. Note that we are regarding (M ×S1)/M0 as a topological space. 
We shall construct a natural semigroup isomorphism

R: Ω Vect(M) −→ Vect
(
(M × S1)/M0

)
,

where Ω Vect(M) is the semigroup of isomorphism classes of Ω vector bundles over M under direct sum.
The map R is constructed as follows. For any isomorphism class [E] ∈ Ω Vect(M) pick a representative 

E and let E → M × S1 denote its caloron transform. Note that the framing of E over M0 determines a 
trivialisation s: E|M0 → M0 × C

n. We now define an equivalence relation on E|M0 by setting

e ∼ e′ if and only if pr2 ◦ s(e) = pr2 ◦ s(e′),

where pr2: M0 ×C
n → C

n is the projection onto the second factor, and extend it to all of E by the identity. 
The set of equivalence classes, denoted E/s, is then a vector bundle over (M × S1)/M0 [1, Lemma 1.4.7]. 
Defining the map R by E �→ E/s, it is straightforward to check that it is well defined on isomorphism 
classes. Moreover, it is manifestly natural and extends to a semigroup homomorphism by the properties of 
the caloron transform since E/s ⊕F/r ∼= (E⊕F )/(s ⊕r), where s ⊕r is the obvious direct sum trivialisation.

Proposition 1.29. R is an isomorphism of semigroups.

Proof. For surjectivity, take any complex vector bundle E → (M×S1)/M0 and let π: M×S1 → (M×S1)/M0
denote the quotient map. A choice of framing for E over the point M0/M0 induces a framing for the lift 
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π∗E over M0. Thus we have a trivialisation s: (π∗E)|M0 → M0×C
n and (π∗E)/s is clearly isomorphic to E. 

Moreover, we can always find a smooth framed vector bundle F → M × S1 that is isomorphic to π∗E and 
hence isomorphic to E after passing to the quotient. But F lies in the image of the caloron transform, so 
we conclude that R is surjective on isomorphism classes.

To establish injectivity, suppose that R(E) = R(F) where R(E) = E/s and R(F) = F/r. Recall the 
Stiefel bundles Vm(Ck) → Grm(Ck) where

Grm(Ck) := {W ⊂ C
k | W is a subspace and dimW = m}

is the Grassmannian and

Vm(Ck) := {(v,W ) | v ∈ W and W ∈ Grm(Ck)} ⊂ C
k × Grm(Ck).

We emphasise that Vm(Ck) → Grm(Ck) has a canonical framing over the point x0 := span{e1, . . . , em} ∈
Grm(Ck) corresponding to the trivialisation(

m∑
i=1

f iei, x0

)
�−→

(
x0,

m∑
i=1

f iei

)
∈ {x0} × C

m,

where ei denotes the i-th standard basis vector in Cm.
By [14, Corollary 3.1.24], letting m = rankE = rankF there is some k such that E ∼= f∗Vm(Ck) and 

F ∼= g∗Vm(Ck) for some smooth maps f, g: M × S1 → Grm(Ck) sending M0 to x0. We may find a smooth 
homotopy from f to g that is constant on M0, thus f∗Vm(Ck) and g∗Vm(Ck) are smoothly isomorphic as 
bundles with framing. This gives that E and F are isomorphic as smooth bundles with framing and so 
injectivity of R follows from the caloron correspondence. �

Consider the Grothendieck group completion K(Ω Vect(M)) of the semigroup Ω Vect(M) and let

rank :K(Ω Vect(M)) −→ Z

be the homomorphism sending [E] − [F] �→ rank E − rank F. Then since R is an isomorphism such that 
rank E = rankR(E) we have

Theorem 1.30. The odd K-theory of M is isomorphic to K−1(M) := ker rank.

In other words, elements of K−1(M) are virtual Ω bundles of virtual rank zero. By the caloron corre-
spondence and the Serre–Swan theorem, every element of K−1(M) may be written in the form E − LCn

where n = rank E.
Another way of showing that K−1(M) is the odd K-theory of M is to use the homotopy theoretic model 

for K−1 as follows. Let GL denote the stabilised general linear group and recall that K−1(M) ∼= [M, GL]. 
The group operation on [M, GL] is given by [g] +[h] = [g⊕h], where g⊕h is the pointwise block sum of g and 
h. At the level of homotopy, the group operations given by block sum and the matrix product are equal so 
the inverse of [g] ∈ K−1(M) is the homotopy class of the map g−1: x �→ (g(x))−1. Define a homomorphism 
K−1(M) → [M, GL] by sending the virtual Ω vector bundle E − LCn to the homotopy class [g], where g is 
any smooth classifying map (equivalently, Higgs field holonomy) for E. It is not difficult to verify that this 
is in fact an isomorphism of groups.

This classifying map approach underlies the model of Tradler–Wilson–Zeinalian [16], which constructs a 
differential extension of odd K-theory via equivalence classes of maps into the smooth classifying space. In 
Section 4 we show that their model defines odd differential K-theory by giving an isomorphism to the Ω
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model of Section 3. The above paragraph ought to be viewed in this context as the topological precursor to 
the proof of Section 4.

2. The string form and the string potential

In this section we introduce the string form and its transgression form using module connections and 
Higgs fields. These give a characterisation of the odd Chern character and its Chern–Simons form for Ω
bundles.

2.1. The string form

Recall that for a complex vector bundle E → M equipped with connection ∇ with curvature R, the 
Chern character is a closed even complex-valued form defined by

Ch(∇) =
∞∑
j=0

1
j!

(
1

2πi

)j

tr
(
R ∧ · · · ∧R︸ ︷︷ ︸

j

)
. (2.1)

It is a standard fact that the cohomology class of Ch(∇) is independent of the choice of connection and 
that the even Chern character map

ch:K0(M) −→ Heven(M ;C)

sending E−F �→ [Ch(∇) −Ch(∇̃)] is a ring homomorphism that is an isomorphism after tensoring with C.
In the case of odd K-theory, we have the following characterisation of the Chern character using the 

homotopy theoretic model K−1(M) = [M, GL]. For a smooth map g: M → GL(n) the odd Chern character 
form is given by

Ch(g) =
∞∑
j=0

−j!
(2j + 1)!

(
− 1

2πi

)j+1

tr
(
g−1dg ∧ · · · ∧ g−1dg︸ ︷︷ ︸

2j+1

)
, (2.2)

which is a closed odd complex-valued form on M . Moreover, the cohomology class of Ch(g) depends only 
on the smooth homotopy class of g [8, Proposition 1.2] so we have the odd Chern character map

ch:K−1(M) −→ Hodd(M ;C)

sending [g] �→ [Ch(g)], which is again a group isomorphism after tensoring with C.
We have already established that the functor K−1 defines odd K-theory, so our present aim is to give a 

natural representation of the odd Chern character on K−1. We do this using the following

Definition 2.1. Given an Ω vector bundle E → M equipped with a module connection � and Higgs field φ, 
define the string form

s(�, φ) =
∫
S1

Ch(∇)

where ∇ is the framed connection on the caloron transform E → M × S1 determined by � and φ.
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It is clear that s(�, φ) is a closed odd complex-valued form on M that is additive with respect to direct 
sum. On the other hand, multiplicativity with respect to the tensor product is lost due to the integration 
over the circle. By virtue of its definition the cohomology class of s(�, φ) is independent of the choice of �
and φ and the string form is natural so its cohomology class is a characteristic class for Ω vector bundles 
that we call the (total) string class.

We can express the string form entirely in terms of � and φ as follows. Given locally trivialising sections 
ěi ∈ Γ(U, E) we obtain corresponding locally trivialising sections ei ∈ Γ(U × S1, E). A straightforward 
calculation yields

R(x,θ)ei = pr∗Rxěi(θ) +
(
pr∗�φ ∧ dθ

)
x
ěi(θ), (2.3)

where R is the curvature of the caloron transformed connection ∇, R is the curvature of � and

�φ(X̂)š := �X̂(φ(š)) − φ(�X̂ š)

is the Higgs field covariant derivative in the direction of the vector field X̂.
Computing the Chern character using the expression on the right hand side of (2.3) and integrating over 

the circle, we have the following

Proposition 2.2. The string form of an Ω bundle E is given explicitly in terms of � and φ by

s(�, φ) =
∞∑
j=1

1
(j − 1)!

(
1

2πi

)j ∫
S1

tr
(
�φ ∧ R ∧ · · · ∧ R︸ ︷︷ ︸

j−1

)
dθ.

Remark 2.3. This formula is reminiscent of the expression for string classes for principal loop group bundles 
[12, Proposition 4.6]. To make this relationship precise, let us introduce the normalised symmetrised trace

trk(ξ1, . . . , ξk) = 1
(k!)2(2πi)k

∑
σ∈Sk

tr
(
ξσ(1) · · · ξσ(k)

)
(2.4)

where Sk is the symmetric group. This is now an invariant polynomial on gl(n) of degree k. Given � and 
φ on E, let A and Φ denote the corresponding connection and Higgs field on the frame bundle F(E). The 
degree 2k − 1 piece of the string form on F(E) is then exactly a string class

strk(A,Φ) = k

∫
S1

trk
(
∇Φ,F, . . . ,F︸ ︷︷ ︸

k−1

)
dθ (2.5)

where ∇Φ = dΦ + [A, Φ] − ∂θA and F = dA + 1
2 [A, A] = R is the curvature of A.

Example 2.4. On the classifying Ω bundle E(n) → GL(n) equipped with the module connection �α(n) and 
Higgs field φ(n), by (2.5) and [12, Proposition 4.11] we have

s(�α(n), φ(n)) =
∞∑
k=1

(
−1

2

)k−1
k!(k − 1)!
(2k − 1)! trk

(
Θ, [Θ,Θ], . . . , [Θ,Θ]︸ ︷︷ ︸

k−1

)
(2.6)

where Θ is the Maurer–Cartan form on GL(n). Since each Ω bundle of rank n is a pullback of E(n) → GL(n), 
the expression above gives a differential form representative for the universal string class.
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The string form extends to a group homomorphism

s:K−1(M) −→ Hodd(M ;C)

by sending E − F �→ [s(�, φ) − s(�̃, φ̃)] for any choice of module connections �, �̃ and Higgs fields φ, φ̃ on 
E, F respectively. The following theorem shows that the string form s represents the odd Chern character 
on K−1.

Theorem 2.5. The following diagram commutes

K−1(M)

H•(M ;C)

K−1(M)
s

∼=

ch

Proof. Recall that the isomorphism K−1(M) → K−1(M) sends E − LCn to [g], with g: M → GL(n) ⊂ GL

a smooth classifying map for E. Modulo exact forms, we then have ch([g]) given by (2.2)

ch([g]) =
∞∑
k=0

−k!
(2k + 1)!

(
− 1

2πi

)k+1

tr
(
g−1dg ∧ · · · ∧ g−1dg︸ ︷︷ ︸

2k+1

)
.

By (2.6) we have

s(�α(n), φ(n)) =
∞∑
k=1

−(k − 1)!
(2k − 1)!

(
− 1

2πi

)k

tr
(
Θ ∧ · · · ∧ Θ︸ ︷︷ ︸

2k−1

)
on the classifying Ω bundle E(n) → GL(n). Since h∗Θ = h−1dh for any smooth map h: M → GL(n) and 
LCn is classified by the constant map at the identity, by naturality of the string form we have the desired 
result. �
2.2. The string potential

A hallmark of the Chern–Weil construction is that the cohomology class of the Chern character is 
independent of the choice of connection. The differential form representative, however, is sensitive to this 
choice and the dependence is captured by the Chern–Simons form, constructed as follows.

Starting with a complex vector bundle E → M , for t ∈ [0, 1] let γ(t) = ∇t be a smooth path of connections 
on E or equivalently, a connection ∇γ on E × [0, 1] such that

∇γ
V pr∗s = 0 (2.7)

for any vector field V that is vertical for the projection pr: M × [0, 1] → M and section s ∈ Γ(E). We write 
γ′(t) = ∇′

t = L∂t
∇t ∈ Ω1(M, End(E)) for the “time derivative” at t of the path γ, where L∂t

is the Lie 
derivative along the canonical vector field ∂t in the [0, 1] direction. Then the Chern–Simons form is the odd 
complex-valued form on M defined by

CS(γ) =
∞∑
j=1

1
(j − 1)!

(
1

2πi

)j
1∫
tr
(
∇′

t ∧Rt ∧ · · · ∧Rt︸ ︷︷ ︸) (2.8)

0 j−1
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where Rt is the curvature of ∇t. It is a standard fact that

dCS(γ) = Ch(∇1) − Ch(∇0)

and furthermore we have that CS(γ0) −CS(γ1) is exact for any two paths γ0 and γ1 with the same endpoints 
[15, Proposition 1.1]. There is an alternative formulation that is often useful in calculations, namely let 
ςt: M ↪→ M × [0, 1] denote the slice map m �→ (m, t), then [15, (1.8)]

CS(γ) =
1∫

0

ς∗t ı∂t
Ch(∇γ)

where ı∂t
denotes contraction along the vector field ∂t.

Proceeding by analogy in the odd case, we define the string potential that captures the dependence of 
the string form on the particular choice of connective data. Fix an Ω vector bundle E → M , for t ∈ [0, 1] let 
γ(t) = (�t, φt) be a smooth path of module connections and Higgs fields, i.e. �γ is a module connection 
on E × [0, 1] that satisfies the analogue of (2.7) and φγ is a Higgs field on E × [0, 1].

Definition 2.6. The string potential of γ is the even complex-valued form on M defined by

S(γ) :=
1∫

0

ς∗t ı∂t
s(�γ , φγ). (2.9)

It is elementary to check that the total string potential is natural with respect to pullbacks. Similarly to 
the Chern–Simons form, we have the following

Proposition 2.7. For any smooth path γ as above

dS(γ) = s(�1, φ1) − s(�0, φ0).

Moreover if γ0 and γ1 have the same endpoints then S(γ0) − S(γ1) is exact.

Proof. Using Cartan’s formula (L = dı + ıd), Stokes’ theorem and the fact that string forms are closed and 
natural we have the first result.

Next let γ0 and γ1 be two paths with the same endpoints and fix a smooth path Γ between them, so that 
Γ(t, i) = γi(t) and Γ(i, s) = γi is a constant map for i = 0, 1. As before, Γ determines a module connection 
�Γ on E × [0, 1]2 that vanishes on vectors vertical for M × [0, 1]2 → M and a Higgs field φΓ on E × [0, 1]2. 
We denote by ς(t,s) the slice map x �→ (x, t, s). A similar calculation to the first part then shows

S(γ1) − S(γ0) = d

∫
[0,1]2

ς∗(t,s)
(
ı∂s

ı∂t
s(�Γ, φΓ)

)
,

which completes the proof. �
We can give an explicit expression for the string potential as follows. Fixing a smooth path γ, write

γ′(t) = (�′
t, φ

′
t) ∈ Ω1(M,EndLC(E)) × Lgl(n)
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where n = rank E. Let Rγ denote the curvature form of �γ on M × [0, 1] and Rt the curvature of �t on M . 
Write �γφγ and �tφt for the Higgs field covariant derivatives of φγ and φt on M× [0, 1] and M respectively. 
For any vector field X on M × [0, 1] tangential to the slice through t, we note that

Rγ(∂t, X) = �γ
∂t
�γ

X −�γ
X�γ

∂t
= d

dt
�γ

X

and

�γφγ(∂t) = �γ
∂t

◦ φγ − φγ ◦ �γ
∂t

= �γ
∂t

◦ φγ = d

dt
φγ .

Thus it follows that ς∗t ı∂t
Rγ = �′

t and ς∗t ı∂t
�γφγ = φ′

t and we have

Proposition 2.8. The string potential of a smooth path γ of module connections and Higgs fields is given by

S(γ) =
∞∑
j=1

j

1∫
0

∫
S1

[
(j − 1)trj(�′

t,Rt, . . . ,Rt︸ ︷︷ ︸
j−2

,�tφt) + trj(Rt, . . . ,Rt︸ ︷︷ ︸
j−1

, φ′
t)
]

Proof. This follows readily from the fact that

s(�, φ) =
∞∑
j=1

j

∫
S1

trj(�φ,R, . . . ,R︸ ︷︷ ︸
j−1

)

and from Definition 2.9 of the string potential S(γ), together with the identities we just established 
above. �

We conclude this section by recording a useful relationship between the string potential and the Chern–
Simons form. It is not difficult to see that paths γ of module connections and Higgs fields on an Ω vector 
bundle E → M correspond bijectively to paths γc of framed connections on the caloron transform E. Then, 
as is straightforward to verify,

S(γ) =
1∫

0

ς∗t ı∂t
s(�γ , φγ) =

∫
S1

CS(γc). (2.10)

The interested reader can also verify that this expression may be obtained directly using (2.3).

2.3. The total string potential

The string potential depends on a pair of module connections and Higgs fields and descends to an even 
form on the base manifold. There exists another secondary invariant for Ω bundles E that we call the total 
string potential, which is associated to a single pair (�, φ) and resides on the total space E. The construction 
is more lucid in the language of principal bundles and proceeds as follows.

Let π: F(E) → M denote the frame bundle of the Ω bundle E and let (A, Φ) be the connection and 
Higgs field corresponding to (�, φ). Recall that the fibre product F(E) ×M F(E) is canonically trivialised 
over F(E) by the diagonal section ξ: e �→ (e, e). This trivialisation singles out a trivial connection Aξ

and trivial Higgs field Φξ on the fibre product, and thus it is natural to consider the straight line path 
γ: t �→ (1 − t)(Aξ, Φξ) + t(ξ∗A, ξ∗Φ). The total string potential is defined by the usual string potential of this 
line segment,

S(A,Φ) := ξ∗S(γ) ∈ Ω2k−2(F(E)).
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Since the curvature and Higgs field covariant derivative of the trivial pair (Aξ, Φξ) vanish, we conclude from 
Proposition 2.7 that dS(A, Φ) = π∗s(A, Φ).

Proposition 2.9. The total string potential on F(E) with connection A and Higgs field Φ is given by

S(A,Φ) =
∞∑
j=1

∫
S1

[
j−1∑
i=0

ci,jtrj
(
Φ, [A,A], . . . , [A,A]︸ ︷︷ ︸

i

,F, . . . ,F︸ ︷︷ ︸
j−i−1

)

+ 2
j−1∑
i=1

ci,jtrj
(
i[A,Φ] − (i + j)∇Φ,A, [A,A], . . . , [A,A]︸ ︷︷ ︸

i−1

,F, . . . ,F︸ ︷︷ ︸
j−i−1

)]

where the coefficients are

ci,j =
(
−1

2

)i
j!(j − 1)!

(j + i)!(j − 1 − i)! .

Proof. The result follows by direct calculation using the expression in Proposition 2.8. First we note that 
pulling back the string potential along the diagonal section ξ eliminates the trivial pair (Aξ, Φξ), so we might 
as well compute with the path t �→ t(A, Φ). This gives (A′

t, Φ′
t) = (A, Φ) and the associated curvature form 

Ft = tF − t
2 (1 − t)[A, A] and Higgs field covariant derivative ∇Φt = t∇Φ − t(1 − t)[A, Φ]. Inserting these 

into the formula for the string potential, applying the binomial expansion and integrating over the interval 
using 

∫ 1
0 tj−1(1 − t)idt = i!(j−1)!

(j+i)! we obtain the desired formula. �
Corollary 2.10. The total string potential restricted to any fibre F(E)m ∼= ΩGL(n) is given by

τ̂ := −2
∞∑
j=1

cj−2,j

∫
S1

trj
(
γ−1∂γ, [Θ,Θ], . . . , [Θ,Θ]︸ ︷︷ ︸

j−1

)
,

where γ ∈ ΩGL(n) and Θ is the Maurer–Cartan form on ΩGL(n). The components of τ̂ are the primitive 
generators for the cohomology ring H•(ΩGL(n), R).

Proof. Let ι: ΩGL(n) → F(E)m denote the isomorphism with the fibre over m ∈ M and note that ι∗A = Θ
and (ι∗Φ)(γ) = γ−1∂γ. In particular, the restriction of the curvature F and Higgs field covariant derivative 
∇Φ to a fibre vanish, so the total string potential simplifies to

ι∗S(A,Φ) = −
∞∑
j=1

2cj−2,j

∫
S1

trj
(
γ−1∂γ, [Θ,Θ]j−1) ,

using ad-invariance of the trj and the relation (2j− 1)cj−1,j = −2cj−2,j . The components of this even form 
coincide with the transgression of the generators of H•(GL(n), R) and it is well-known [13, Appendix 4.11]
that the latter generate the polynomial algebra H•(ΩGL(n), R). �
Example 2.11. In [11], the authors consider the lifting bundle gerbe associated to the standard central 
extension

1 → S1 → Ω̂G → ΩG → 1,

where G is a compact Lie group with a normalised Killing form 〈·, ·〉. They give a formula for the bundle 
gerbe curving
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B = 1
2πi

∫
S1

〈F,Φ〉 − 1
2 〈A, ∂A〉,

which is a 2-form on the total space of an ΩG-bundle Q → M equipped with a connection A and Higgs field Φ, 
and whose differential descends to a representative of the string class s3(A, Φ) ∈ H3(M, Z). Computing the 
degree two component of the total string potential for G = U(n) with 〈·, ·〉 = −8π2tr2(·, ·), we have

S2(A,Φ) = − 1
8π2

∫
S1

〈Φ,F〉 − 1
6 〈Φ, [A,A]〉 − 1

3 〈A, [A,Φ]〉 + 〈A,∇Φ〉

= − 1
8π2

∫
S1

2〈Φ,F〉 − 〈A, ∂A〉 − 〈A, dΦ〉 + 〈Φ, dA〉

= 1
2πiB + d

( 1
4π2

∫
S1

〈A,Φ〉
)
.

Thus, the total string potential recovers the curving of the lifting bundle gerbe up to an exact form.

The total string potential is the odd analogue of the total Chern–Simons form for a principal 
GL(n)-bundle Q with connection A with curvature F , defined as [6, (3.5)]

CS(A) =
∞∑
j=1

j−1∑
i=0

ci,jtrj
(
A, [A,A], . . . , [A,A]︸ ︷︷ ︸

i

, F, . . . , F︸ ︷︷ ︸
j−i−1

)
.

When Q = F(E) is the caloron transform of the frame bundle F(E) and the framed connection A is 
determined by A and Φ, we have the relationship

S(A,Φ) =
∫
S1

CS(A). (2.11)

This is the analogue of Eq. (2.10), although the interpretation is more subtle since CS(A) resides on the 
total space of F(E) and integration over the circle is not straightforward in this case. However, recall that 
A as defined in (i.2) lifts to a basic form on F(E) × S1 ×GL(n). The connection A appearing on the right 
hand side in (2.11) should therefore be viewed as the pullback of this basic form by the projection map onto 
F(E) × S1, after which the S1-integration makes sense.

In [6, Proposition 3.15] it was shown that CS(A), reduced mod Z, defines an even differential character 
on M . Indeed, this was one of the main motivations of the Cheeger–Simons model for differential cohomology 
Ȟ•(M). By (2.11), it follows that the mod Z reduction of the total string potential determines an odd 
differential character on M ; the differential refinement of the string form.

3. The Ω model for odd differential K-theory

The primary reason for dealing with Ω bundles is that they give convenient objects with which to describe 
odd K-theory. Despite being extravagant in dimensions, working with Ω vector bundles is useful since it 
allows one to phrase odd K-theory of the compact manifold M entirely in terms of smooth bundles based over 
M and gives a bundle-theoretic interpretation of the identity K−1(M) = [M, BΩGL]. More importantly, 
by using module connections and Higgs fields we obtain a natural refinement to differential K-theory. The 
construction uses the string potential form in a role analogous to that played by the Chern–Simons form in 
the Simons–Sullivan construction of even differential K-theory [15].
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3.1. Differential extensions

First let us recall the framework of differential extensions due to Bunke–Schick [2], specialising to the 
case of complex K-theory. Denoting by

ch:K•(M) −→ H•(M ;C)

the Chern character of topological K-theory, we have the following

Definition 3.1. A differential extension of K-theory is a contravariant functor Ǩ• from the category of com-
pact manifolds (possibly with corners) to Z2-graded abelian groups together with natural transformations

(1) Ch: Ǩ•(M) → Ω•
d=0(M ; C) (the curvature);

(2) I: Ǩ•(M) → K•(M) (the underlying class); and
(3) a: Ω•−1(M ; C)/ im d → Ǩ•(M) (the action of forms)

such that

(1) the diagram

Ǩ•(M)

K•(M)

Ω•
d=0(M ;C)

H•(M ;R)

I ch

Ch deR

commutes, with deR the map induced by the de Rham isomorphism;
(2) Ch ◦ a = d, the exterior derivative; and
(3) the sequence

K•−1(M) ch−−−→ Ω•−1(M ;C)/ im d a−−→ Ǩ•(M) I−−→ K•(M) −→ 0

is exact.

We denote the data of such a differential extension succinctly as the quadruple (Ǩ•, Ch, I, a).

Example 3.2. The Simons–Sullivan model for even differential K-theory is the Grothendieck group comple-
tion of isomorphism classes of structured vector bundles; that is vector bundles equipped with an equivalence 
class of connections defined by Chern–Simons exactness. More precisely, if E → M is a smooth vector bun-
dle we say that connections ∇0 and ∇1 for E are equivalent if there is a smooth path of connections γ from 
∇0 to ∇1 such that the Chern–Simons form of (2.8) is exact. This defines an equivalence relation on the 
space of all connections on E, and a vector bundle E → M equipped with such an equivalence class [∇] is 
a structured (vector) bundle over M .

A cocycle in the Simons–Sullivan model of even differential K-theory, the underlying group of which we 
denote by Ǩ0, is given by a virtual difference E −F of structured vector bundles. In fact, every element of 
Ǩ0 may be written in the form E − n where n = (Cn, [d]) is the trivial structured bundle of rank n. As 
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a differential extension, Ǩ0 of course comes equipped with curvature, underlying class and action of forms 
maps čh, Ǐ and ǎ respectively. Briefly, čh is given by computing the Chern character forms of (2.1), Ǐ is 
given by discarding the connective structure and ǎ may be characterised in a way completely analogous to 
the remark following Theorem 3.17. The interested reader is referred to [15] for details.

In [3] it is shown that any two differential extensions of the even part of K-theory are isomorphic; in 
particular Ǩ0 defines even differential K-theory. We note that an isomorphism of differential extensions is 
a natural isomorphism of the underlying functors that preserves the curvature, underlying class and action 
of forms maps. As clarified by Bunke–Schick, the axioms above do not uniquely determine differential 
extensions of odd K-theory. Indeed, to obtain uniqueness in odd degree we require either a multiplicative 
structure or an S1-integration map:

Definition 3.3. A differential extension (Ǩ•, Ch, I, a) of K-theory has S1-integration if there is a natural 
transformation ∫

S1

: Ǩ•(M × S1) −→ Ǩ•−1(M)

compatible with the natural transformations Ch and I and the S1-integration maps on differential forms 
and on K. If pr: M × S1 → M is the projection, we also require

(1)
∫
S1 pr∗ x = 0 for each x ∈ Ǩ•(M); and

(2)
∫
S1(idM ×t)∗x = −

∫
S1x for all x ∈ Ǩ•(M ×S1), with t: S1 → S1 the (orientation-reversing) map given 

by complex conjugation.

An isomorphism of differential extensions with S1-integration is also required to preserve the S1-integration 
maps.

3.2. Structured Ω vector bundles

By analogy with the structured vector bundles of Simons–Sullivan, we now introduce structured Ω vector 
bundles as the basic ingredient underlying our model for odd differential K-theory.

Let E → M be an Ω vector bundle equipped with module connection � and Higgs field φ. As established 
in Theorem 2.5, the odd Chern character of E is represented in terms of � and φ via the string form and, 
using the normalised symmetrised traces (2.4), the string form can be written more elegantly as

s(�, φ) =
∞∑
j=1

j

∫
S1

trj(�φ,R, . . . ,R︸ ︷︷ ︸
j−1

).

Similarly, for any smooth path γ(t) = (�t, φt) of module connections and Higgs fields on E, the string 
potential becomes

S(γ) =
∞∑
j=1

j

1∫
0

∫
S1

[
(j − 1)trj(�′

t,Rt, . . . ,Rt︸ ︷︷ ︸
j−2

,�φt) + trj(Rt, . . . ,Rt︸ ︷︷ ︸
j−1

, φ′
t)
]
.

Note that there is a smooth path γ connecting any pair (�0, φ0) on E to any other pair (�1 , φ1) and by 
Proposition 2.7 a different choice of path with the same endpoints amounts to a shift by an exact form. We 
thus have a well defined map
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S(�0, φ0;�1, φ1) := S(γ) mod exact

which satisfies the transitivity relation

S(�0, φ0;�2, φ2) = S(�0, φ0;�1, φ1) + S(�1, φ1;�2, φ2).

This induces an equivalence relation on the space of module connections and Higgs fields by

(�0, φ0) ∼ (�1, φ1) if and only if S(�0, φ0;�1, φ1) = 0 mod exact,

and we call an equivalence class [�, φ] a string datum on E.

Definition 3.4. A structured Ω vector bundle is a pair E = (E, [�, φ]) where E → M is an Ω vector bundle 
and [�, φ] is a string datum on E.

By naturality of string potentials and string forms, for a smooth map f : N → M we may define the pull 
back of a structured Ω vector bundle E = (E, [�, φ]) on M by f∗E := (f∗E, f∗[�, φ]) where f∗[�, φ] :=
[f∗�, f∗φ]. There is an obvious notion of isomorphism of structured Ω vector bundles. It is easy to verify 
that the direct sum operation extends to string data, so setting

E ⊕ F := (E ⊕ F, [�⊕ �̃, φ⊕ φ̃])

gives a well defined operation on structured Ω bundles.
It is important for our purposes to understand how structured Ω vector bundles behave under smooth 

homotopies. Suppose that ft: N → M is a family of smooth maps depending smoothly on the parameter 
t ∈ [0, 1] and we are given an Ω vector bundle E → M equipped with module connection � and Higgs field φ. 
By taking the caloron transform and using parallel transport along the family of curves ρx,θ: [0, 1] → M×S1, 
ρx,θ(t) := (ft(x), θ), we obtain isomorphisms f∗

0 E ∼= f∗
t E for each t ∈ [0, 1]. Abusing notation slightly by 

omitting explicit reference to these isomorphisms and inserting into (2.9) we get

S(f∗
0�, f∗

0φ; f∗
1�, f∗

1φ) =
1∫

0

f∗
t ıρ̇x(t)s(�, φ) dt mod exact, (3.1)

where ρ̇x(t) is the tangent to the curve ρx(t) := ft(x) at t ∈ [0, 1].

Definition 3.5. Let Struct(M) denote the set of isomorphism classes of structured Ω vector bundles over M . 
Direct sum makes Struct(M) an abelian semigroup and the assignment Struct: M �→ Struct(M) defines a 
contravariant functor.

Remark 3.6. We shall usually denote an element of Struct(M) by E, rather than the technically correct [E], 
to avoid an excess of notation.

Example 3.7. The trivial structured Ω bundle of rank n is LCn := (LCn, [d, ∂]).

Example 3.8. Recall the bundles E(n) → GL(n) equipped with the Higgs fields φ(n) and module connections 
�α(n). As remarked in Example 1.22, the connection �α(n) depends on the choice of a smooth function
α: R → [0, 1]. At the level of string data, however, we claim that [�α(n), φ(n)] is independent of the choice 
of α.
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To see this, take any two choices of α0, α1 of such smooth functions and consider the line segment γ from 
(�α0(n), φ(n)) to (�α0(n), φ(n)). The module connection determined by a point s in this line segment then 
corresponds to the ΩGL(n)-connection

Â = Θ −
(
sα1 + (1 − s)α0

)
ad(p−1)π∗Θ̂

on PGL(n) × [0, 1], where s ∈ [0, 1]. Writing α̂ = sα1 + (1 − s)α0, a simple calculation gives that the 
curvature of Â is

F = 1
2
(
α̂2 − α̂

)
ad(p−1)

[
π∗Θ̂, π∗Θ̂

]
.

The Higgs field φ(n) is determined by the canonical Higgs field Φ on PGL(n) (as in Example 1.18), which 
satisfies

∇Φ = ∂α̂ ad(p−1)π∗Θ̂

on PGL(n) × [0, 1]. The string form associated to this data is then

s(�γ , φγ) =
∞∑
j=1

(
−1

2

)j−1
j!(j − 1)!
(2j − 1)! trj

(
Θ, [Θ,Θ], . . . , [Θ,Θ]︸ ︷︷ ︸

j−1

)
.

Notice that this has no component in the [0, 1] direction, so by (2.9) the string potential is S(γ) = 0. We 
call E(n) = (E(n), [�α(n), φ(n)]) the canonical structured Ω bundle of rank n. In light of this fact, we will 
usually not specify a choice of α when referring to E(n).

The following sub-semigroups of Struct(M) are important in the sequel

• Struct0(M) := {(E, [�, φ]) ∈ Struct(M) | E is trivial} is the semigroup of topologically trivial structured 
Ω vector bundles;

• Structcl(M) := {g∗E(n) | g: M → GL(n) is smooth for some n} is the semigroup of structured Ω vector 
bundles that are classified by the E(n);

• StructT (M) := {(E, [�, φ]) ∈ Struct(M) | E ⊕ LCn is trivial for some n} is the semigroup of stably 
trivial structured Ω vector bundles;

• StructF (M) := {E ∈ Struct(M) | E⊕LCn is trivial for some n} is the semigroup of stably flat structured 
Ω vector bundles.

Note that StructF (M) and Struct0(M) are both sub-semigroups of StructT (M) and all assignments M �→
Struct∗(M) are functorial.

Before defining the Ω model for odd differential K-theory, we must verify that every element of Struct(M)
has an inverse, that is for each E there is some F such that E⊕F ∼= LCn. We shall do this in two steps by first 
showing explicitly that every element of Structcl(M) has an inverse and then demonstrating that modulo 
Struct0(M) every element of Struct(M) lives in Structcl(M). The intuition here is that we can “cancel off” 
the geometric data on E by a topologically trivial structured Ω vector bundle to obtain a pullback of E(n), 
for which we have explicit inverses.

Lemma 3.9. Each element of Structcl(M) has an inverse in Structcl(M).

Proof. Take any g∗E(n) ∈ Structcl(M). We show that (g−1)∗E(n) is an inverse to g∗E(n), with g−1: M →
GL(n) the map x �→ g(x)−1. To see this, observe that g∗E(n) ⊕ (g−1)∗E(n) is canonically isomorphic to the 
pullback of E(2n) by the block sum map
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g ⊕ g−1:x �−→
[
g(x) 0

0 g(x)−1

]
where each entry is an n × n-matrix. For t ∈ [0, π2 ] define the map Xt: M → GL(2n) by

x �−→
[
g(x) 0

0 1

] [
cos t − sin t

sin t cos t

] [
1 0
0 g(x)−1

] [
cos t sin t

− sin t cos t

]
.

The family of maps Xt gives a smooth homotopy from g ⊕ g−1 to the constant map id: x �→ id ∈ GL(2n)
and, as in [16, Lemma 3.6], we have

tr
(
X−1

t ∂tXt · (X−1
t dXt)2j

)
= 0

for each j ≥ 0. Denoting by � and φ the pullback module connection and Higgs field on (g ⊕ g−1)∗E(2n)
and using (3.1), we conclude that

S(�, φ; d, ∂) =

π
2∫

0

X∗
t ı∂tXt(x)

[ ∞∑
j=0

−j!
(2j + 1)!

(
− 1

2πi

)j+1

tr
(
Θ2j+1)]dt

=

π
2∫

0

∞∑
j=0

−j!
(2j)!

(
− 1

2πi

)j+1

tr
(
X−1

t ∂tXt · (X−1
t dXt)2j

)
dt = 0 mod exact

since X∗
t ı∂tXt(x)Θ = X−1

t ∂tXt and X∗
t Θ = X−1

t dXt. Thus we have

g∗E(n) ⊕ (g−1)∗E(n) = (g ⊕ g−1)∗E(2n) = LC2n

as required. �
If LCn → M is a trivial Ω vector bundle, for any choice of module connection � and Higgs field φ on 

LCn let γ	,φ denote the straight line path from the trivial pair (d, ∂) to the pair (�, φ). Define a map

S: Struct0(M) −→ Ωeven(M ;C)/ im d

by sending (E, [�, φ]) �−→ S(γ	,φ) mod exact. It is straightforward to check that S is a well defined semigroup 
homomorphism and determines a natural transformation of functors.

Theorem 3.10. The homomorphism S is surjective.

Proof sketch. The proof goes along the same lines as [15, Proposition 2.6], adapted to the case of structured 
Ω bundles. We begin by proving the result for M = R

n. Consider the trivial Ω line bundle LC → R
n, which 

has caloron transform the trivial line bundle C → R
n × S1 with its canonical framing over Rn

0 := R
n ×{0}.

A framed connection on C corresponds to a complex-valued 1-form ω that vanishes when pulled back 
to R

n
0 . Via the caloron correspondence we may view ω as the image of some module connection � and Higgs 

field φ on LC under the caloron transform, in which case

S(LC, [�, φ]) =
∫

CS(tω) =
∞∑
j=1

1
j!

(
1

2πi

)j ∫
ω ∧ dωj−1 mod exact.
S1 S1
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Now pick any f ∈ C∞(M ; C) and set ω = ifdθ, noting that ω satisfies the pullback requirement so 
corresponds to a connection in the image of the caloron transform. Then

S(LC, [�, φ]) = 1
2πi

∫
S1

ω = f.

Thus we have that Ω0(Rn; C) ⊂ im S. Proceeding by induction, suppose for k > 0 that

k−1⊕
i=0

Ω2i(Rn;C)/ im d ⊂ im S.

Write α = x1dx2 + · · · + x2k−1dx2k and β = dα = dx1 ∧ dx2 + · · · + dx2k−1 ∧ dx2k and let ρ: S1 → R be a 
smooth function such that ρ(0) = 0 and 

∫
S1 ρ

k = (2π)k+1. Then for any f ∈ C∞(M) we set ω = iρ α+ ifdθ, 
noting as before that this is a framed connection on C. By a straightforward calculation we have(

1
i

)k+1

ω ∧ dωk = fρkβk ∧ dθ + kρkα ∧ df ∧ βk−1 ∧ dθ

= (k + 1)!fρkdx1 ∧ · · · ∧ dx2k ∧ dθ mod exact,

and hence

S(LC, [�, φ]) = fdx1 ∧ · · · ∧ dx2k +
k∑

j=1

1
j!

(
1

2πi

)j ∫
S1

ω ∧ dωj−1 mod exact.

By induction we have that

S(E) = −
k∑

j=1

1
j!

(
1

2πi

)j ∫
S1

ω ∧ dωj−1 mod exact

for some E ∈ Struct0(M). Hence, writing L := (LC, [�, φ]) we conclude that

S(E ⊕ L) = fdx1 ∧ · · · ∧ dx2k mod exact.

Since every 2k-form on Rn is a sum of such terms and S is a homomorphism, we obtain the result for Rn.
For an arbitrary compact manifold M , we choose an embedding ı: M → R

n. The pullback ı∗ is surjective 
on forms and clearly ı∗ Struct0(Rn) ⊂ Struct0(M), so the result follows by the naturality of S. �

Combining Lemma 3.9 and Theorem 3.10 we can finally prove

Theorem 3.11. Each element of Struct(M) has an inverse.

Proof. For any arbitrary element E = (E, [�, φ]) ∈ Struct(M) with rank E = n, pick a representative pair 
(�, φ) for the string datum. Recall that the Higgs field holonomy holφ: M → GL(n) is a smooth classifying 
map for E that preserves the Higgs field. Writing g = holφ for brevity, we have therefore g∗E(n) ∼= E. 
Consider the straight line path γ on E connecting the pullback pair (g∗�(n), φ(n) = φ) to the original pair 
(�, φ).

By Theorem 3.10 we can always find F ∈ Struct0(M) such that S(F) = −S(γ) mod exact. Without loss of 
generality, F = (LCk, [�̃, φ̃]) so that S(γ	̃,φ̃) = −S(γ) mod exact. Then on E ⊕LCk we have that γ ⊕ γ	̃,φ̃

is a smooth path from the pair (g∗�(n) ⊕ d, φ ⊕ ∂) to the pair (� ⊕ �̃, φ ⊕ φ̃) such that
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S(γ ⊕ γ	̃,φ̃) = S(γ) + S(γ	′,φ′) = 0 mod exact.

Recalling the notation id: M → GL for the constant map at the identity, we thus have that E ⊕ F =
g∗E(n) ⊕ id∗E(k) = (g ⊕ id)∗E(n + k) in Struct(M) and the result follows from Lemma 3.9. �
3.3. The Ω model

Let K(Struct(M)) denote the Grothendieck group completion of the semigroup Struct(M) and define 
the rank homomorphism

rank :K(Struct(M)) −→ Z

that sends a formal difference of structured Ω bundles E − F to its virtual rank rank E − rank F ∈ Z. We 
define

Ǩ−1(M) := ker rank

so that elements of Ǩ−1(M) are precisely virtual structured Ω vector bundles of rank zero; this is the Ω
model. There are a few immediate elementary consequences of this definition and Theorem 3.11, namely

• every element of Ǩ−1(M) is of the form E − LCn where n = rank E;
• E − F = 0 in Ǩ−1(M) if and only if E and F are stably isomorphic, i.e.

E ⊕ LCn = F ⊕ LCn

for some n; and hence
• E − LCn = 0 in Ǩ−1(M) if and only if E ∈ StructF (M).

By definition of string data, the string form map S: Struct(M) → Ωodd
d=0(M ; C) that sends (E, [�, φ]) �→

s(�, φ) is a well defined semigroup homomorphism. After passing to the group completion, we have the 
induced map

S: Ǩ−1(M) −→ Ωodd
d=0(M ;C)

that sends E − F �→ S(E) − S(F). There is also the natural surjection

Ǐ: Ǩ−1(M) −→ K−1(M)

that discards the connective data, giving the commuting diagram of natural homomorphisms

Ǩ−1(M)

K−1(M)

Ωodd
d=0(M ;C)

H•(M ;C)

Ǐ ch

S deR

where ch is the odd Chern character map as in Theorem 2.5. It is clear from this presentation that S and Ǐ
may be viewed respectively as the curvature and underlying class maps of a differential extension of K−1.
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3.4. The action of forms

In order to obtain the action of forms on Ǩ−1 we use the map S of Theorem 3.10, following ideas of 
Simons–Sullivan [15, Section 2].

Definition 3.12. A pair (�, φ) on E → M is Flat if the corresponding caloron transformed connection ∇ on 
E → M × S1 has trivial holonomy around any loop in M × S1. By (2.3) this implies that � has curvature 
R = 0 and the Higgs field covariant derivative �φ = 0. Moreover, since ∇ admits global parallel sections, 
via the caloron correspondence we may identify E with a trivial bundle equipped with the trivial pair (d, ∂).

Recall the odd degree complex-valued form

τ =
∞∑
j=0

−j!
(2j + 1)!

(
− 1

2πi

)j+1

tr
(
Θ2j+1

GL

)
on the stable general linear group GL. This can be transgressed to the based loop group ΩGL in the usual 
way; if ev: ΩGL × S1 → GL is the evaluation map then it follows that ev∗ΘGL = ΘΩGL + Φ dθ, where 
Φ(γ) = γ−1∂γ for γ ∈ ΩGL, so we obtain the closed even degree complex-valued form

τ̂ =
∫
S1

ev∗τ =
∞∑
j=0

−j!
(2j)!

(
− 1

2πi

)j+1 ∫
S1

tr
(
Φ · Θ2j

ΩGL

)
on ΩGL. It is well known that the cohomology H∗(ΩGL; C) is a polynomial ring primitively generated by 
the components of τ̂ (cf. Corollary 2.10).

Define the space of closed even-degree forms

∧ΩGL(M) := {G∗τ̂ | G:M → ΩGL is smooth}

with group structure given by (G ⊕ H)∗τ̂ = G∗τ̂ + H∗τ̂ and (G−1)∗τ̂ = −G∗τ̂ . By Bott periodicity 
ΩGL � BGL × Z, we may identify even K-theory with smooth homotopy classes of maps M → ΩGL, 
in which case the Chern character on K0(M) sends [G] �→ [G∗τ̂ ] ∈ H•(M ; C). This gives an identification 
of ∧ΩGL(M) mod exact with the space of all even Chern characters on M .

Proposition 3.13. If (�, φ) and (�̃, φ̃) are any two Flat pairs on E, then

S(�, φ; �̃, φ̃) ∈ ∧ΩGL(M) mod exact.

Proof. Let ∇ and ∇̃ be the corresponding caloron transformed connections. Since ∇ and ∇̃ both have 
trivial holonomy we may without loss of generality take ∇ = d and write ∇̃ = g−1 ◦ d ◦ g for some smooth 
map g: M × S1 → GL(n) viewed as an automorphism of the trivial bundle, with n = rankE. The path of 
connections γ(t) = d + tg−1dg has curvature (t2 − t)g∗

(
Θ ∧Θ

)
, with Θ the Maurer–Cartan form on GL(n). 

It follows that the Chern–Simons form associated to γ is

CS(γ) =
∞∑
j=1

−(j − 1)!
(2j − 1)!

(
− 1

2πi

)j

g∗ tr
(
Θ2j−1).

Thus
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S(�, φ; �̃, φ̃) =
∞∑
j=0

−j!
(2j + 1)!

(
− 1

2πi

)j+1∫
S1

g∗ tr
(
Θ2j+1) mod exact.

Denoting by G: M → ΩGL(n) the map G(m)(θ) := g(m, θ), we have

g∗Θ(m,θ) = G∗Θm + G∗Φ(m) dθ,

where the Θ on the right hand side denoting the Maurer–Cartan form on ΩGL(n). Plugging this into the 
above expression for S(�, φ; �̃, φ̃) gives the result. �
Remark 3.14. We note that by the above, for any smooth map G: M → ΩGL(n), the straight line path 
γ on the trivial Ω vector bundle LCn from the trivial pair (d, ∂) to the Flat pair (G−1dG, G−1∂G) yields 
S(γ) = G∗τ̂ on the nose.

Let ∧̂ΩGL(M) := ∧ΩGL(M) + dΩodd(M ; C). We extend the homomorphism S of Theorem 3.10 to a map 
StructT (M) → Ωeven(M ; C)/∧̂ΩGL(M) as follows. If E = (E, [�, φ]) ∈ StructT (M) choose trivial bundles F
and H such that E ⊕ F ∼= H. Pick any Flat pairs (d, ∂), (d̃, ∂̃) on H and F respectively and set

S(E) := S(d, ∂;�⊕ d̃, φ⊕ ∂̃) mod ∧̂ΩGL(M).

It is straightforward to verify that S is a well defined semigroup homomorphism and is surjective on 
Ωeven(M ; C)/∧̂ΩGL(M) by Theorem 3.10. However

Lemma 3.15. The kernel of S is precisely StructF (M).

Proof. By definition we have StructF (M) ⊂ kerS. For the converse, take E ∈ kerS so that

S(E) = S(d, ∂;�⊕ d̃, φ⊕ ∂̃) = G∗τ̂ mod exact

with (H, [d, ∂]) and (F, [d̃, ∂̃]) as above. The caloron transform of H is a trivial bundle Cn → M × S1 with 
its trivial connection d. Defining g: M × S1 → GL(n) by g(m, θ) = G(m)(θ), set ∇ := g−1 ◦ d ◦ g and let 
(d̂, ∂̂) denote the corresponding Flat pair on H. As in Remark 3.14 we have S(d, ∂, ̂d, ∂̂) = G∗τ̂ mod exact
and so

S(d̂, ∂̂;�⊕ d̃, φ⊕ ∂̃) = 0 mod exact,

which shows that E is stably flat. �
Corollary 3.16. The map S induces a semigroup isomorphism

S: StructT (M)/ StructF (M) −→ Ωeven(M ;C)/∧̂ΩGL(M)

and hence StructT (M)/ StructF (M) is a group.

Note that we may identify StructT (M)/ StructF (M) with the kernel of the map Ǐ as follows. Let

j: StructT (M)/ StructF (M) −→ ker Ǐ

be the map {E} �→ E−LCn, recalling that E −LCn = 0 in K−1(M) if and only if E is stably trivial. Moreover, 
it is clear that j({E}) = 0 if and only if E is stably flat and also that j is surjective, so by precomposing j
by S−1 we obtain an isomorphism
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Ωeven(M ;C)/∧̂ΩGL(M) ∼=−−−→ ker Ǐ

and hence an injection ı: Ωeven(M ; C)/∧̂ΩGL(M) → Ǩ−1(M). As noted previously, the even Chern character 
may be represented by pullbacks of the class [τ̂ ] ∈ H•(ΩGL; C) and so it follows that ∧̂ΩGL(M) = im ch. 
We can thus define the action of forms ǎ as the composition

Ωeven(M ;C)/ im d
pr−−−→

(
Ωeven(M ;C)/ im d

)/
im ch ı−−→ Ǩ−1(M)

from which it follows that the sequence

K0(M) ch−−−→ Ωeven(M ;C)/ im d ǎ−−→ Ǩ−1(M) Ǐ−−→ K−1(M) −→ 0

is exact. To verify that S ◦ ǎ = d, we note that for any stably trivial E = (E, [�, φ])

dS({E}) = s(�, φ) = S ◦ j ({E}).

Thus for any {ω} ∈ Ωeven(M ; C)/ im d

S ◦ ǎ({ω}) = S ◦ ı({ω}) = S ◦ j ◦ S−1({ω}) = dω.

At last we have the following

Theorem 3.17. The functor M �→ Ǩ−1(M) with the natural transformations S, Ǐ and ǎ as above defines a 
differential extension of odd K-theory.

It is important in the sequel to have a thorough understanding of the action of forms map on Ǩ−1. For 
any ω ∈ Ωeven(M ; C) we have a({ω}) = E − LCn, where E ∈ Struct0(M) has the following property. For 
any smooth path γ from a Flat pair (d, ∂) to a chosen representative (�, φ) of the string datum of E, we 
have

S(γ) = ω mod ∧̂ΩGL(M),

so S(γ) = ω+G∗τ̂+dχ for some smooth G: M → ΩGL and odd form χ for any such path γ. By Remark 3.14
the term G∗τ̂ can be offset by perturbing to a different Flat pair (d̃, ∂̃) using a straight line segment. Thus 
we conclude that we can arrange to have a path γ̃ originating at (d̃, ∂̃) and ending at (�, φ) that satisfies

S(γ̃) = ω mod exact.

3.5. Odd differential K-theory

So far we have shown that Ǩ−1 is a differential extension of odd K-theory. As proved in [3], there 
are infinitely many inequivalent differential extensions of odd K-theory. However, differential extensions 
equipped with S1-integration map are unique up to unique isomorphism and such an extension is what we 
mean by a model for differential K-theory.

To show that Ǩ−1 does indeed define odd differential K-theory, we first fix a model (K̂•, ̂ch, Î , ̂a) for 
differential K-theory with S1-integration 

∫̂
S1 . Recalling our notation (Ǩ0, čh, Ǐ , ̌a) for the Simons–Sullivan 

model for even differential K-theory, by [2, Theorem 3.10] there is a unique natural isomorphism Φ0: Ǩ0 →
K̂0 preserving all of the structure.

Using the caloron correspondence together with the map Φ0, we define a map
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Φ1: Ǩ−1(M) −→ K̂−1(M), (3.2)

sending a formal difference of structured Ω vector bundles E = (E, [�, φ]) and F = (F, [�̃, φ̃]) to

Φ1
(
E − F

)
:=

∫̂
S1

Φ0
(
(E, [∇]) − (F, [∇̃])

)
(3.3)

where (E, ∇) and (F, ∇̃) are the caloron transformed bundles corresponding to some choice of representatives 
of the string data. A priori the definition of Φ1 depends on this choice and there is no canonical representative 
in the general case, but nevertheless we have the following

Proposition 3.18. The map Φ1 is a well defined group homomorphism.

Proof. Take any pairs of representatives (�0, φ0), (�1, φ1) for [�, φ] and similarly (�̃0, φ̃0), (�̃1, φ̃1) for 
[�̃, φ̃]. Write ∇0, ∇1 and ∇̃0, ∇̃1 respectively for the corresponding caloron transformed connections. Show-
ing that Φ1 is well defined is then equivalent to showing that

∫̂
S1

Φ0
(
(E, [∇0]) − (F, [∇̃0])

)
=

∫̂
S1

Φ0
(
(E, [∇1]) − (F, [∇̃1])

)
.

Let γ be the line segment from (�0, φ0) to (�1, φ1) and γ̃ the line segment from (�̃0, φ̃0) to (�̃1, φ̃1). By 
definition of string data we have that S(γ) and S(γ̃) are exact. Under the caloron transform, γ, γ̃ give rise 
to smooth paths γc, γ̃c on E and F or, equivalently, framed connections ∇γc , ∇̃γ̃c on E× [0, 1] and F × [0, 1]
respectively. By naturality of Φ0, the Homotopy Formula [2, Theorem 2.6] applied to the even differential 
K-class x̂ := Φ0

(
(E × [0, 1], [∇γc ]) − (F × [0, 1], [∇̃γ̃c ])

)
yields

Φ0
(
(E, [∇1]) − (F, [∇̃1])

)
− Φ0

(
(E, [∇0]) − (F, [∇̃0])

)
= â

( ∫
[0,1]

ĉh
(
x̂
))

.

Since Φ0 respects the curvature maps we have

ĉh
(
x̂
)

= čh
(
(E × [0, 1], [∇γc

]) − (F × [0, 1], [∇̃γ̃c

])
)

= Ch(∇γc

) − Ch(∇̃γ̃c

)

and hence

∫
[0,1]

ĉh
(
x̂
)

=
1∫

0

ς∗t ı∂t

(
Ch(∇γc

) − Ch(∇̃γ̃c

)
)
dt = CS(γc) − CS(γ̃c).

Using the relationship (2.10) between the string potentials and the Chern–Simons forms, after integrating 
over the fibre we obtain

∫̂
S1

â

( ∫
[0,1]

ĉh
(
x̂
))

= ǎ

( ∫
S1

CS(γc) − CS(γ̃c)
)

= ǎ
(
S(γ) − S(γ̃)

)
= 0

since S(γ) − S(γ̃) is exact and action of forms ǎ vanishes on exact forms by definition. It is not hard to 
verify that Φ1 is a homomorphism, so we have the result. �
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We now examine how Φ1 behaves with respect to the natural transformations S, Ǐ and ǎ.

Curvature: For E − F ∈ Ǩ−1(M) as above, we have

S
(
E − F

)
= s(�, φ) − s(�̃, φ̃) =

∫
S1

(
Ch(∇) − Ch(∇̃)

)
and also

ĉh ◦ Φ1
(
E − F

)
=

∫
S1

čh
(
(E, [∇]) − (F, [∇̃])

)
=

∫
S1

(
Ch(∇) − Ch(∇̃)

)

so that ĉh ◦ Φ1 = S as required.

Underlying class: Consider the map Ǩ−1(M) → K0(M × S1) given by

E − F �−→ E − F,

noting that this coincides with the composition of Ǐ: Ǩ−1(M) → K−1(M) with the pullback q∗ induced by 
the quotient map q: M × S1 → ΣM+. We also have

Î ◦ Φ1
(
E − F

)
=

∫
S1

Ǐ
(
(E, [∇]) − (F, [∇̃])

)
=

∫
S1

(
E − F

)
,

where the integration operations appearing in this expression are the S1-integration maps on ordinary 
K-theory. Recall the splitting K0(M × S1) ∼= im pr∗ ⊕ ker ı∗, with pr: M × S1 → M the projection and 
ı: m �→ (m, 0) the canonical embedding, and also that the pullback q∗ is an isomorphism K−1(M) →
ker ı∗ (the suspension isomorphism). The S1-integration on K-theory is defined as the composition of the 
projection onto ker ı∗ with the map (q∗)−1. From this it follows that 

∫
S1 ◦ q∗ = id on the image of Ǐ so that 

Î ◦ Φ1 = Ǐ as required.

Action of forms: Recall the characterisation of a({ω}) = E−LCn following Theorem 3.17. Given a structured 
Ω bundle E = (E, [�, φ]), choose a representative (�, φ) for the string datum and let (E, ∇) denote the 
caloron transform, then

Φ1 ◦ a
(
{ω}

)
=

∫̂
S1

Φ0
(
(E, [∇]) − n

)
.

Moreover, if γ is a path from some Flat pair on E to the chosen representative (�, φ) such that S(γ) = ω

mod exact, then

S(γ) =
∫
S1

CS(γc) =
∫
S1

( 1
2πω ∧ dθ

)
,

where γc is the path on E corresponding to γ via the caloron transform. The action of forms map ǎ on the 
Simons–Sullivan model Ǩ0(M) is defined in essentially the same fashion as above [15, Section 3], so we have 
that

(E, [∇]) − n = ǎ
(
{ 1 ω ∧ dθ + α}

)

2π
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for some α in the kernel of 
∫
S1 . Hence

∫̂
S1

Φ0
(
(E, [∇]) − n

)
=

∫̂
S1

â
(
{ 1

2πω ∧ dθ + α}
)

= â
(
{ω}

)
so that â = Φ1 ◦ ǎ as required. We now have the following

Theorem 3.19. The map Φ1 is an isomorphism.

Proof. The result is obtained by applying the five-lemma to the commuting diagram

K0(M) Ωeven(M ;C) Ǩ−1(M) K−1(M) 0

K0(M) Ωeven(M ;C) K̂−1(M) K−1(M) 0

ch ǎ Ǐ

ch â Î

Φ1

where the rows are exact and all unlabelled vertical arrows are the identity. �
Remark 3.20. The isomorphism Φ1 does not depend on the choice of model K̂•. Indeed, if K̂• and L̂•

are any two models for differential K-theory, let Φ0: Ǩ0 → K̂0 and Φ′
0: Ǩ0 → L̂0 be the corresponding 

unique natural isomorphisms from the Simons–Sullivan model. There is also a unique natural isomorphism 
Ψ: K̂• → L̂• preserving all the structure, and by uniqueness we have Φ′

0 = Ψ ◦ Φ0. Since Ψ preserves the 
S1-integrations on K̂• and L̂•, it follows that if Φ1: Ǩ−1 → K̂−1 and Φ′

1: Ǩ−1 → L̂−1 are the maps given 
by (3.3) then Φ′

1 = Ψ ◦ Φ1.

The content of Theorem 3.19 is essentially that Ǩ−1 defines odd differential K-theory and, together 
with the above remark, we have a canonical isomorphism from Ǩ−1 to any other model for odd differential 
K-theory. The results of Bunke–Schick tell us that when we have an S1-integration map we may impose a 
uniqueness condition on this isomorphism. As we now show, the inverse caloron transform induces a partial 
S1-integration map ∫

S1

: Ǩ0(M × S1) −→ Ǩ−1(M)

and the isomorphism appearing in Theorem 3.19 is the unique isomorphism respecting this operation. We 
begin by defining the partial S1-integration. Just as for ordinary K-theory we have a splitting

Ǩ0(M × S1) ∼= im pr∗ ⊕ ker ı∗.

We emphasise that elements of ker ı∗ are of the form E − n where ı∗E is stably flat, so by adding trivial 
structured vector bundles as necessary every element of ker ı∗ may be expressed in the form (E′, [∇]) − n, 
where E′ → M×S1 is framed over M0 and ∇ is a framed connection. The inverse caloron transform functor 
induces a well defined surjective homomorphism ker ı∗ −→ Ǩ−1(M) by sending

(E, [∇]) − n �−→ (E, [�, φ]) − LCn

where (E, �, φ) is the inverse caloron transform of (E, ∇). We define the partial S1-integration map
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∫
S1

: Ǩ0(M × S1) −→ Ǩ−1(M)

as the composition of the inverse caloron transform with the projection onto ker ı∗. By construction 
∫
S1 is 

natural, it vanishes on the image of pr∗ and is compatible with the curvature and underlying class maps, 
that is ∫

S1

◦ čh = S ◦
∫
S1

and
∫
S1

◦ Ǐ = Ǐ ◦
∫
S1

.

We also have the commuting diagram

Ǩ0(M × S1) K̂0(M × S1)

Ǩ−1(M) K̂−1(M)

Φ0

∫̂
S1

∫
S1

Φ1

which implies that 
∫
S1 has all the properties required of an S1-integration on Ǩ0.

Proposition 3.21. The map Φ1 is the unique natural isomorphism Ǩ−1 → K̂−1 respecting the integration 
map 

∫
S1 : Ǩ0(· × S1) → Ǩ−1(·) defined via the inverse caloron transform.

Proof. Suppose that Ψ: Ǩ−1 → K̂−1 is another such natural isomorphism. Then we have

Φ1 ◦
∫
S1

=
∫̂
S1

◦ Φ0 = Ψ ◦
∫
S1

which implies that Φ1 = Ψ since 
∫
S1 is clearly surjective. �

We make a final remark on the odd differential Chern character on Ǩ−1. The even differential Chern 
character in the Simons–Sullivan model is the natural map

Čh: Ǩ0(M) −→ Ȟeven(M)

mapping into even differential characters that sends (E, [∇]) − (F, [∇′]) to the even differential character on 
M defined by the difference CS(∇) − CS(∇′) of Chern–Simons forms. Using this, we may define the odd 
differential Chern character similarly to the map Φ1 of Theorem 3.19. That is, we send E − F to the odd 
differential character

Čh
(
E − F

)
:=

∫
S1

Čh
(
(E, [∇]) − (F, [∇̃])

)

where (E, ∇) and (F, ∇̃) are the caloron transformed bundles corresponding to some choice of representatives 
of the string data. The proof that this is well-defined follows along the same lines of Proposition 3.18 using 
the Homotopy Formula.
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3.6. Hermitian Ω vector bundles

We note that the entire approach of the preceding sections applies immediately to Hermitian Ω vector 
bundles equipped with compatible module connections and Higgs fields. In particular, the string potential 
exactness condition that defines string data leads to a Hermitian version of the semigroup Struct (and its 
various sub-semigroups) which we shall denote by StructR. Proofs of all the preceding results proceed by 
analogy, so writing Ǩ−1

R
(M) for the rank zero subgroup of K(StructR(M)) we have the following

Theorem 3.22. The functor M �→ Ǩ−1
R

(M) with the natural transformations S, Ǐ and ǎ defines odd differ-
ential K-theory.

4. The Tradler–Wilson–Zeinalian model

In a recent paper [16], Tradler, Wilson and Zeinalian construct an elementary differential extension of odd 
K-theory, which we shall refer to as the TWZ extension. As previously mentioned, differential extensions of 
odd K-theory are non-unique and it is not yet known that the TWZ extension is a model for odd differential 
K-theory. This is the content of the present section: by constructing an explicit isomorphism between the 
Ω model and that of Tradler–Wilson–Zeinalian we complete the construction of [16].

The TWZ extension refines the homotopy theoretic model K−1(M) = [M, U ] using an equivalence 
relation on the space of smooth maps M → U that is strictly finer than smooth homotopy. We briefly recall 
the salient points of the construction.

Definition 4.1. Two smooth maps g0, g1: M → U are CS-equivalent, denoted g0 ∼CS g1, if and only if there 
exists a smooth homotopy G from g0 to g1 such that

∞∑
j=0

−j!
(2j)!

(
− 1

2πi

)j+1 1∫
0

tr
(
g−1
t ∂tgt · (g−1

t dgt)2j
)
dt = 0 mod exact

where gt := G( , t): M → U . The set Ľ−1(M) of equivalence classes inherits an abelian group structure 
from the block sum operation on maps M → U and the assignment M �→ Ľ−1(M) defines a contravariant 
functor on the category of compact manifolds with corners.

The TWZ extension Ľ−1 is a differential extension of odd K-theory, so it comes with curvature, underlying 
class and action of forms maps.

Curvature: The curvature map R: Ľ−1(M) → Ωodd
d=0(M) is given by its action on CS-equivalence classes as

[g]CS �−→
∞∑
j=0

−j!
(2j + 1)!

(
− 1

2πi

)j+1

tr
(
(g−1dg)2j+1).

Underlying class: The underlying class map J : Ľ−1(M) → K−1(M) is simply the map

[g]CS �−→ [g],

on CS-equivalence classes, where the equivalence classes on the right hand side are taken modulo smooth 
homotopy.

Action of forms: The action of forms map b: Ωeven(M)/ im d → Ľ−1(M) is given by sending {ω} to the class 
[g]CS , where for any choice g ∈ [g]CS there is a smooth homotopy G from the constant map to the identity 
id to g such that
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∞∑
j=0

−j!
(2j)!

(
− 1

2πi

)j+1 1∫
0

tr
(
g−1
t ∂tgt · (g−1

t dgt)2j
)
dt = ω mod exact,

with gt := G( , t) as before.

Consider now the natural map

ı: Ľ−1(M) → Ǩ−1
R

(M)

that sends

[g]CS �−→ g∗E(n) − LCn

for some choice of representative g: M → U(n) of the CS-equivalence class. We observe that ı is well defined, 
for if g0 ∼CS g1 then take any smooth homotopy G from g0 to g1. Since M × [0, 1] is compact, we may 
without loss of generality suppose that the image of G is contained in some U(k) and so by (3.1) we have, 
modulo exact forms,

S
(
g∗0�(k), g∗0φ(k); g∗1�(k), g∗1φ(k)

)
=

1∫
0

g∗t ı∂tgts
(
�(k), φ(k)

)
dt

=
1∫

0

g∗t ı∂tgt

∞∑
j=0

−j!
(2j + 1)!

(
− 1

2πi

)j+1

tr
(
Θ2j+1) dt

=
∞∑
j=0

−j!
(2j)!

(
− 1

2πi

)j+1

tr
(
g−1
t ∂gt · (g−1

t dgt)2j
)
dt = 0

where g0, g1 are viewed as maps M → U(k) by taking the block sum with the constant map at the identity as 
necessary. It is easy to see that R = S ◦ ı and J = Ǐ ◦ ı so that ı preserves the curvature and underlying class 
maps. Moreover by comparing b with the characterisation of the action of forms map ǎ on Ǩ−1 following 
Theorem 3.17, we see that ı ◦ b = ǎ, so that ı is a natural transformation of differential extensions.

Theorem 4.2. The map ı is an isomorphism.

Proof. The proof is essentially identical to that of Theorem 3.19. �
Remark 4.3. This result demonstrates that every element of Ǩ−1

R
(M) may be written in the form g∗E(n) −

LCn for some g: M → U(n). In particular, it implies that the canonical structured bundles E(n) over U(n)
classify Ǩ−1

R
and it also gives a homotopy theoretic interpretation of the Hermitian Ω model.
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