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Abstract For a compact manifold M and a differentiable stack X presented by a
Lie groupoid X, we show the Hom-stack Hom(M, X) is presented by a Fréchet—
Lie groupoid Map(M, X) and so is an infinite-dimensional differentiable stack. We
further show that if X is an orbifold, presented by a proper étale Lie groupoid, then
Map(M, X) is proper étale and so presents an infinite-dimensional orbifold.

This note serves to announce a generalisation of the authors’ work [8], which
showed that the smooth loop stack of a differentiable stack is an infinite-dimensional
differentiable stack, to more general mapping stacks where the source stack is a
compact manifold (or more generally a compact manifold with corners). We apply
this construction to differentiable stacks that are smooth orbifolds, that is, they can
be presented by proper étale Lie groupoids (see Definition 9).

Existing work on mapping spaces of orbifolds has been considered in the case of
Ck maps [4], of Sobolev maps [10] and smooth maps [3]; in the latter case several
different notions of smooth orbifold maps are considered, from the point of view
of orbifolds described by orbifold charts. In all these cases, some sort of orbifold
structure has been found (for instance, Banach or Fréchet orbifolds).

Noohi [6] solved the problem of constructing a topological mapping stack
between more general topological stacks, when the source stack has a presentation
by a compact topological groupoid. See [8] for further references and discussion.

We take as given the definition of Lie groupoid in what follows, using finite-
dimensional manifolds unless otherwise specified. Manifolds will be considered
as trivial groupoids without comment. We pause only to note that in the infinite-
dimensional setting, the source and target maps of Fréchet-Lie groupoids must be
submersions between Fréchet manifolds, which is a stronger hypothesis than asking
the derivative is surjective (or even split) everywhere, as in the finite-dimensional or
Banach case.
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We will also consider groupoids in diffeological spaces. Diffeological spaces (see
e.g. [1]) contain Fréchet manifolds as a full subcategory and admit all pullbacks
(in fact all finite limits) and form a cartesian closed category such that for K
and M smooth manifolds with K compact, the diffeological mapping space MX is
isomorphic to the Fréchet manifold of smooth maps K — M.

Differentiable stacks are, for us, stacks of groupoids on the site M of finite-
dimensional smooth manifolds with the open cover topology that admit a presenta-
tion by a Lie groupoid [2]. We can also consider the more general notion of stacks
that admit a presentation by a diffeological or Fréchet-Lie groupoid.

Definition 1 Let X, Y be stacks on M. The Hom-stack Hom(Y, X) is defined by
taking the value on the manifold N to be Stacky(Y x N, X).

Thus we have a Hom-stack for any pair of stacks on M. The case we are
interested in is where we have a differentiable stack X associated to a Lie groupoid
X, e.g. an orbifold, and the resulting Hom-stack Hom(M, X) for M a compact
manifold.

We define a minimal cover of a manifold M to be a cover by regular closed sets
V; such that the interiors V;° form an open cover of M, and every V;° contains a point
not in any other V;°. We also ask that finite intersections V;N...N Vj are also regular
closed. Denote the collection of minimal covers of a manifold M by C(M)pin, and
note that such covers are cofinal in open covers. Recall that a cover V of a manifold
defines a diffeological groupoid C(V) with objects [ [, V; and arrows ]_[ vinv.t

We are particularly interested in the case when we take the closure {U;} of {U;}, a
good open cover, minimal in the above sense.

We denote the arrow groupoid of a Lie groupoid X by X?—it is again a Lie
groupoid and comes with functors S, 7: X* — X, with object components source
and target, resp. Let M be a compact manifold with corners and X a Lie groupoid.
Define the mapping groupoid Map(M, X) to be the following diffeological groupoid.
The object space Map(M X)o is the disjoint union over minimal covers V of the

spaces XEW) of functors C (V) — X. The arrow space Map(M, X); is

W 2., C(V12) &
H X XxEwiz) (X7) Xxtwvin) X
V1,V2€C(M)min

where the chosen minimal refinement Vi, C V| X V; is defined using the boolean
product on the algebra of regular closed sets. The maps

ST (x3) o xCV and xCV) o xCV) (= 1, 2) )
give us a pullback and the two projections

C(V12)

XC(VI) XC(V12) (XQ) XC(V12) XC(VZ) - XC(Vi)’ (2)

'We can in what follows safely ignore the issue of intersections of boundaries.
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induce, for i = 1, 2, the source and target maps for our groupoid resp. Composition
in the groupoid is subtle, but is an adaptation of the composition of transformations
of anafunctors given in [7]. The proof of the following theorem works exactly as in
Theorem 4.2 in [8].

Theorem 2 For X a Lie groupoid and M a compact manifold the Hom-stack
Hom(M, X) is presented by the diffeological groupoid Map(M, X). O
We need some results that ensure the above constructions give Fréchet manifolds.

Proposition 3 For M a compact smooth Riemannian manifold (possibly with
corners), K a compact regular closed Lipschitz subset of M and N a smooth
manifold, the induced restriction map N¥ — NX is a submersion of Fréchet
manifolds.

Proof Recall that a submersion of Fréchet manifolds is a smooth map that is locally,
for suitable choices of charts, a projection out of a direct summand. This means we
have to work locally in charts and show that we have a split surjection of Fréchet
spaces. We can reduce this to the case that N = R”, since the charts are given
by spaces of sections of certain vector bundles, and we can consider these spaces
locally and patch them together, and thence to N = R. The proof then uses [5,
Theorem 3.15], as we can work in charts bi-Lipschitz to flat R”, hence reduce to the
case of K C B C R”", for B some large open ball. O

In particular this is true for sets K that are closures of open geodesically convex
sets, and even more specifically such open sets that are the finite intersections of
geodesically convex charts in a good open cover. We also use a special case of
Stacey’s theorem [9, Corollary 5.2]; smooth manifolds with corners are smoothly
T-compact spaces in Stacey’s sense.

Theorem 4 (Stacey) Let Ny — N, be a submersion of finite-dimensional mani-
folds and K a compact manifold, possibly with corners. Then the induced map of
Fréchet manifolds NK — NX is a submersion. O

The following proposition is the main technical tool in proving the mapping stack
is an infinite-dimensional differentiable stack.

Proposition 5 The diffeological space X ¢W) js a Fréchet manifold.

Proof First, the diffeological space of functors is isomorphic to the space of
simplicial maps N C (V) — NX between the nerves of the groupoids. Then, since the
subspaces of degenerate simplicies in N C (V) are disjoint summands, we can remove
those, and consider semi-simplicial maps between semisimplicial diffeological
spaces instead. Then, since inverses in C (V) are also disjoint, we can remove those
as well, and consider the diffeological space of semisimplicial maps from the ‘nerve’
of the smooth irreflexive partial order lons (V) to the nerve of X, considered as a
semisimplicial space (where we have chosen an arbitrary total ordering on the finite
minimal cover V). This diffeological space is what we show is a Fréchet manifold,
by carefully writing the limit as an iterated pullback of diagrams involving maps that
are guaranteed to be submersions by Proposition 3 and Theorem 4, and using the
fact that X is appropriately coskeletal, i.e. (NX), = X Xx, ... Xx, Xi. The original
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space of functors is then a diffeological space isomorphic to this Fréchet manifold,
hence is a Fréchet manifold. O

Lemma 6 Let X — Y be a functor between Lie groupoids with object and arrow
components submersions, and Vi — V5 a refinement of minimal covers. Then the
induced map XV — YCWV is a submersion between Fréchet manifolds. O

We will consider the special cases that the functor X — Y is the identity, and also
that the refinement V; — V; is the identity.

Theorem 7 For a Lie groupoid X and compact manifold M, Map(M,X) is a
Fréchet—Lie groupoid.

Proof The object space Map(M, X)o is a manifold by Proposition 5. The arrow
space Map(M, X), is a manifold since it is given by a pullback diagram built with
the maps (1), which are submersions by Lemma 6. The identity map is smooth, as it
is a smooth map between diffeological spaces that happen to be manifolds, and so
is composition. O

The following theorem is the first main result of the paper. The proof uses the
technique of [6, Theorem 4.2] as adapted in [8], where it is shown that all of the
constructions remain smooth.

Theorem 8 For a Lie groupoid X and compact manifold M, the stack Hom(M, X)
is weakly presented by the Fréchet—Lie groupoid Map(M, X). O

A weak presentation means that the pullback of the map Map(M,X)y —
Hom(M,X) against itself gives a stack representable by the Fréchet manifold
Map(M, X);, and the two projections are submersions. For the site of diffeological
spaces, a weak presentation is an ordinary presentation. This is also the case if we
allow non-Hausdorff manifolds [2, Proposition 2.2], so we either have to pay the
price of a weak presentation or working over a site of non-Hausdorff manifolds. If
the groupoid Map(M, X) is proper, as in Theorem 10 below, then we can upgrade
this weak presentation to an ordinary one over Hausdorff manifolds.

Definition 9 A (Fréchet—)Lie groupoid Z is proper if the map (s,1): Z, — Zy X Zy
is a proper map (i.e. closed with compact fibres), érale if the source and target maps
are local diffeomorphisms, and an orbifold groupoid if it is a proper and étale.

It is a theorem of Moerdijk—Pronk that orbifold groupoids are equivalent to
orbifolds defined in terms of orbifold charts—in finite dimensions—if we ignore
issues of effectivity (which we do, for now). For infinite dimensional orbifolds this
is not yet known, but may be possible for Fréchet-Lie groupoids with local additions
on their object and arrow manifolds, of which our construction is an example.

Our second main result is then:

Theorem 10 If X is an étale Lie groupoid, then Map(M, X) is étale. If X is an
orbifold groupoid, then Map(M, X) is an orbifold groupoid.
Proof Stability of local diffeomorphisms under pullback mean that we only need to

show that the smooth maps S é(v), T¢W): 0:¢ Q)C(V) - X é(v), for any minimal cover
V, are local diffeomorphisms. If X is an étale Lie groupoid then the fibres of its
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source and target maps are discrete, and one can show that S, T¢(") have discrete
diffeological spaces as fibres. But these maps are submersions of Fréchet manifolds,
hence are local diffeomorphisms.

Properness follows if we can show that (s, f) for the mapping groupoid is closed
and every object has a finite automorphism group. This reduces to showing that
(S, 7)Y is closed and its fibres are finite. We can show the latter by again working
in the diffeological category and showing that the fibres of (S, 7)Y are discrete,
and also a subspace of a finite diffeological space. As all the spaces involved are
metrisable, we use a sequential characterisation of closedness together with the
local structure of the proper étale groupoid X, and find an appropriate convergent
subsequence in the required space of natural transformations. O
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